Processing math: 100%
14.若正數(shù)x,y滿足2x+y-3=0,則2x+1y的最小值為3.

分析 利用“乘1法”基本不等式的性質(zhì)即可得出.

解答 解:2x+1y=132x+y2x+1y=132xy+2yx+53,當(dāng)且僅當(dāng)x=y=1時取等號.
所以2x+1y的最小值為3.
故答案為:3

點評 本題考查了“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在下列各函數(shù)中,偶函數(shù)是( �。�
A.y=x3B.y=x4C.y=xD.y=1x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)常數(shù)a∈R,函數(shù)f(x)=|x-1|+|x2-a|,若f(2)=1,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱椎P-ABC中,D,E,F(xiàn)分別是棱PC、AC、AB的中點,且PA⊥面ABC.
(1)求證:PA∥面DEF;
(2)求證:面BDE⊥面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)y=2x在[0,1]上的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知命題P:函數(shù)y=lg(ax2+2x+1)的定義域為R;命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立.若P∨Q是真命題,P∧Q是假命題;求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.圓柱的側(cè)面展開圖是邊長分別為4π、1的矩形,則該圓柱的體積為4π或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+ax(x≠0,a∈R)
(1)當(dāng)a=0時,判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.二手車經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如下的對應(yīng)數(shù)據(jù):
使用年數(shù)246810
售價16139.574.5
(1)若這兩個變量呈線性相關(guān)關(guān)系,試求y關(guān)于x的回歸直線方程ˆy=ˆbx+ˆa;
(2)已知小王只收購使用年限不超過10年的二手車,且每輛該型號汽車的收購價格為ω=0.03x2-1.81x+16.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大?
(銷售一輛該型號汽車的利潤=銷售價格-收購價格)
參考公式:ˆb=ni=1xi¯xyi¯yni=1xi¯x2=ni=1xiyin¯x¯yni=1xi2n¯x2,ˆa=¯yˆb¯x

查看答案和解析>>

同步練習(xí)冊答案