設(shè)a,b,c∈R+,P=a+b-c,Q=b+c-a,R=c+a-b,則“PQR>0”是“P,Q,R同時(shí)大于零”的


  1. A.
    充分而不必要條件
  2. B.
    必要而不充分條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件
C
解析:
必要性是顯然成立的;
當(dāng)PQR>0時(shí),若P,Q,R不同時(shí)大于零,則其中兩個(gè)為負(fù),一個(gè)為正,不妨設(shè)P>0,Q<0,R<0,則Q+R=2c<0,這與c>0矛盾,即充分性也成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R+,且a+b+c=3,則
1
a
+
1
b
+
1
c
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R,則“ac2<bc2”是“a<b”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“設(shè)a、b、c∈R,若ac2>bc2則a>b”以及它的逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R且abc≠0,則由代數(shù)式
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
的值組成的集合為
{-4,0,4}
{-4,0,4}
.(用列舉法表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R,則“ac=bc”是“a=b”的( 。l件.

查看答案和解析>>

同步練習(xí)冊(cè)答案