在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線過點(diǎn)P(-2,-4)的直線為參數(shù))與曲線C相交于點(diǎn)M,N兩點(diǎn).
(Ⅰ)求曲線C和直線的普通方程;
(Ⅱ)若|PM|,|MN|,|PN |成等比數(shù)列,求實數(shù)a的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-)=1,M,N分別為C與x軸,y軸的交點(diǎn).
(1)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo).
(2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,已知圓的參數(shù)方程(為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)直線,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在直角坐標(biāo)系中,曲線的參數(shù)方程為(為非零常數(shù),為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,直線的方程為.
(Ⅰ)求曲線的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數(shù),使得直線與曲線有兩個不同的公共點(diǎn),且(其中為坐標(biāo)原點(diǎn))?若存在,請求出;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,已知圓的圓心,半徑
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)若,直線的參數(shù)方程為(為參數(shù)),直線交圓于兩點(diǎn),求弦長的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)中,已知圓經(jīng)過點(diǎn),圓心為直線與極軸的交點(diǎn),求圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,已知點(diǎn)P為圓ρ2+2ρsinθ﹣7=0上任一點(diǎn).求點(diǎn)P到直線ρcosθ+ρsinθ﹣7=0的距離的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以坐標(biāo)原點(diǎn)為極點(diǎn),橫軸的正半軸為極軸的極坐標(biāo)系下,有曲線C:,過極點(diǎn)的直線
(且是參數(shù))交曲線C于兩點(diǎn)0,A,令OA的中點(diǎn)為M.
(1)求點(diǎn)M在此極坐標(biāo)下的軌跡方程(極坐標(biāo)形式).
(2)當(dāng)時,求M點(diǎn)的直角坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com