13.函數(shù)f(x)=sinxcosx+cos2x的減區(qū)間是$[{kπ+\frac{π}{8},kπ+\frac{5π}{8}}],k∈Z$.

分析 由三角函數(shù)公式化簡可得f(x)=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{1}{2}$.結(jié)合正弦函數(shù)圖象的性質(zhì)來求其單調(diào)減區(qū)間.

解答 解:f(x)=sinxcosx+cos2x
=$\frac{1}{2}$sin2x+$\frac{1}{2}$(1+cos2x)
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+$\frac{1}{2}$.
所以2kπ+$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z.
所以函數(shù)f(x)=sinxcosx+cos2x的減區(qū)間是kπ+$\frac{π}{8}$≤x≤kπ+$\frac{5π}{8}$,k∈Z.
故答案是:$[{kπ+\frac{π}{8},kπ+\frac{5π}{8}}],k∈Z$.

點評 本題考查二倍角公式,涉及三角函數(shù)的單調(diào)性,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線l1:3x-y+2=0,l2:x+my-3=0,若l1⊥l2,則m的值等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某市居民自來水收費標(biāo)準(zhǔn)如下:每戶每月用水不超過5噸時,每噸為2.6元,當(dāng)用水超過5噸時,超過部分每噸4元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x,3x噸.
(1)求y關(guān)于x的函數(shù);
(2)若甲、乙兩戶該月共交水費34.7元,分別求甲、乙兩戶該月的用水量和水費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若集合A={x∈Z|-2<x<2},B={x|y=log2x2},則A∩B=( 。
A.{-1,1}B.{-1,0,1}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=ln({1+x})-x,g(x)=\frac{{{x^2}+2x+a}}{x+2}({a∈R})$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間及最值;
(2)若對?x>0,f(x)+g(x)>1恒成立,求a的取值范圍;
(3)求證:$\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+…+\frac{1}{2n+1}<ln({n+1})({n∈{N^*}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓$Ω:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,直線$\frac{{\sqrt{2}}}{2}x+y=1$經(jīng)過Ω的右頂點和上頂點.
(1)求橢圓Ω的方程;
(2)設(shè)橢圓Ω的右焦點為F,過點G(2,0)作斜率不為0的直線交橢圓Ω于M,N兩點.設(shè)直線FM和FN的斜率為k1,k2
①求證:k1+k2為定值;
②求△FMN的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.頂點在原點,對稱軸是y軸,且頂點與焦點的距離等于6的拋物線標(biāo)準(zhǔn)方程是x2=±24y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知z1=a+3i,z2=3-4i,若$\frac{z_1}{z_2}$為純虛數(shù),則實數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.△ABC中,已知A=$\frac{π}{3}$,a=10.
(1)若B=$\frac{π}{4}$,求△ABC的面積;
(2)求b的取值范圍;
(3)求△ABC周長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案