已知復數(shù)z=m-1-mi(m∈R),求|z|的最值.
考點:復數(shù)求模
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)模的計算公式、二次函數(shù)的單調性即可得出.
解答: 解:∵復數(shù)z=m-1-mi(m∈R),
∴|z|=
(m-1)2+(-m)2
=
2(m-
1
2
)2+
1
2
2
2
,當且僅當m=
1
2
時取等號.
∴|z|有最小值
2
2
,無最大值.
點評:本題考查了復數(shù)模的計算公式、二次函數(shù)的單調性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a,b,c為△ABC的內角A,B,C的對邊,且b<a<c,滿足
sinB+sinC
sinA
=
2-cosB-cosC
cosA
,函數(shù)f(x)=sinωx(ω>0)在區(qū)間[0,
π
3
]上單調遞增,在區(qū)間[
π
3
π
2
]上單調遞減.
(1)證明:b,a,c成等差數(shù)列;
(2)若f(
π
9
)=cosA,且a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinx=
2
3
,cosy=-
3
4
,且x、y都是第二象限角,求sin(x+y)及sin(x-y)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
3
-3
9-x2
-x3)dx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a2+b2=2010c2,求證:
2sinAsinBcosC
sin2(A+B)
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項等比數(shù)列{an}的公比為q,其前n項和為Sn,若對一切n∈N*都有an+1≥2Sn,則q的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設log567=a,求log568和log562的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
sin2xsinφ+cos2xcosφ-
1
2
sin(
π
2
+φ)(0<φ<π),將凼數(shù)f(x)的圖象向左移
π
12
個單位后關于y軸對稱,則φ等于( 。
A、
π
6
B、
π
4
C、
π
3
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-1(x≤0)
f(x-1)+1(x>0)
,則函數(shù)g(x)=f(x)-x在區(qū)間[-5,5]上的零點之和為( 。
A、15B、16C、30D、32

查看答案和解析>>

同步練習冊答案