A. | ①② | B. | ①②③ | C. | ①②④ | D. | ②④ |
分析 令f(x)>0可解x的范圍;對函數(shù)f(x)進(jìn)行求導(dǎo),然后令f'(x)=0求出x,在根據(jù)f'(x)的正負(fù)判斷原函數(shù)的單調(diào)性進(jìn)而可確定②正確.根據(jù)函數(shù)的單調(diào)性可判斷極大值即是原函數(shù)的最大值,無最小值,③正確,④不正確.從而得到答案.
解答 解:由f(x)>0可得(2x-x2)ex>0
∵ex>0,∴2x-x2>0,∴0<x<2,故①正確;
f′(x)=ex(2-x2),由f′(x)=0得x=±$\sqrt{2}$,
由f′(x)<0得x>$\sqrt{2}$或x<-$\sqrt{2}$,由f′(x)>0得-$\sqrt{2}$<x<$\sqrt{2}$,
∴f(x)的單調(diào)減區(qū)間為(-∞,-$\sqrt{2}$),($\sqrt{2}$,+∞);單調(diào)增區(qū)間為(-$\sqrt{2}$,$\sqrt{2}$).
∴f(x)的極大值為f($\sqrt{2}$),極小值為f(-$\sqrt{2}$),故②正確.
∵x<-$\sqrt{2}$時,f(x)<0恒成立.
∴f(x)無最小值,但有極大值.
∴③正確,④錯誤.
故選:B.
點(diǎn)評 本題的考點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的極值,主要考查函數(shù)的極值與其導(dǎo)函數(shù)關(guān)系,即函數(shù)取到極值時導(dǎo)函數(shù)一定等于0,但導(dǎo)函數(shù)等于0時還要判斷原函數(shù)的單調(diào)性才能確定原函數(shù)的極值點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于直線$x=\frac{π}{3}$對稱 | B. | 關(guān)于直線$x=\frac{π}{6}$對稱 | ||
C. | 關(guān)于點(diǎn)$(\frac{π}{3},0)$對稱 | D. | 關(guān)于點(diǎn)$(\frac{π}{6},0)$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2023×2017 | B. | 2023×2016 | C. | 1008×2023 | D. | 2017×1008 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com