2.已知函數(shù)y=mx+b是R上的減函數(shù),則( 。
A.m≥0B.m≤0C.m>0D.m<0

分析 利用一次函數(shù)的性質(zhì)判斷即可.

解答 解:函數(shù)y=mx+b是R上的減函數(shù),可得m<0.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一條光線從點(diǎn)A(0,2)射入,與x軸相交于點(diǎn)B(2,0),經(jīng)x軸反射后過點(diǎn)C(m,1),直線l過點(diǎn)C且分別與x軸和y軸的正半軸交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),則當(dāng)△OPQ的面積最小時(shí)直線l的方程為(
A.x+$\frac{y}{3}$=1B.$\frac{x}{6}$+$\frac{y}{2}$=1C.$\frac{x}{4}$+$\frac{y}{4}$=1D.$\frac{x}{12}$+$\frac{3y}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足a1=b1=3,a2=b4,a3=b13
(1)求數(shù)列{an}的{bn}通項(xiàng)公式;
(2)記cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列各函數(shù)中,最小值為2的是( 。
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.$y=\sqrt{x}+\frac{4}{{\sqrt{x}}}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an},{bn}滿足a1=1且an,an+1是函數(shù)f(x)=x2-bnx+2n的兩個(gè)零點(diǎn),則b8=(  )
A.24B.32C.48D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-2x-8,g(x)=2x2-4x-16,
(1)求不等式g(x)<0的解集;
(2)若對(duì)一切x>5,均有f(x)≥(m+2)x-m-15成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在斜三棱柱ABC-A1B1C1中,點(diǎn)O、E分別是A1C1、AA1的中點(diǎn),AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)證明:OE∥平面AB1C1;
(2)證明:AB1⊥A1C;
(3)設(shè)P是棱CC1 的中點(diǎn),求P到側(cè)面ABB1A的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(Ⅰ)求a,b;
(Ⅱ)求f(log2x)的最小值及相應(yīng) x的值;
(Ⅲ)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1的漸近線方程為( 。
A.y=±$\frac{4}{3}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{16}{9}$xD.y=±$\frac{9}{16}$x

查看答案和解析>>

同步練習(xí)冊(cè)答案