已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足:對任意實數(shù)x,都有f(x)≥x,且當x∈(1,3)時,有成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,f(x)的表達式;
(3)設,x∈[0,+∞),若g(x)圖上的點都位于直線的上方,求實數(shù)m的取值范圍.
【答案】分析:(1)由已知f(2)≥2恒成立,又由成立得(2)≤,由此兩種情況可得f(2)=2.
(2)f(-2)=0,由(1)證明知f(2)=2,f(x)的表達式中有三個未知數(shù),由兩函數(shù)值只能得出兩個方程,再對任意實數(shù)x,都有f(x)≥x,這一恒成立的關系得到一0,由此可以得到a=,將此三方程聯(lián)立可解出三個參數(shù)的值,求出f(x)的表達式;
(3)方法一:由題f(x)圖象(在y軸右側)總在直線上方即可,也就是直線的斜率小于直線與拋物線相切時的斜率位置,由于f(x)圖象與y軸交點在直線與y軸交點上方,在與y軸相交點處的切線斜率為,故在直線與二次函數(shù)相切的切點處一定有切線的斜率大于直線的斜率,且,將兩個方程聯(lián)立,用判別式為0求m的最大值.
方法二:必須恒成立,即x2+4(1-m)x+2>0在x∈[0,+∞)恒成立.
轉化為二次函數(shù)圖象與x軸在x∈[0,+∞)無交點的問題,由于g(x)的單調(diào)性不確定,故本題要分兩種情況討論,一種是對稱軸在y軸右側,此時需要判別式小于0,一類是判別式大于0,對稱軸小于0,且x=0處的函數(shù)值大于等于0,轉化出相應的不等式求解.
解答:解:(1)由條件知f(2)=4a+2b+c≥2恒成立
又∵取x=2時,與恒成立,
∴f(2)=2.
(2)∵
∴4a+c=2b=1,
∴b=,c=1-4a
又f(x)≥x恒成立,即ax2+(-1)x+1-4a≥0恒成立.
,整理得
故可以解出:

(3)解法1:由分析條件知道,只要f(x)圖象(在y軸右側)總在直線上方即可,也就是直線的斜率小于直線與拋物線相切時的斜率位置,
于是:

解法2:必須恒成立,
即x2+4(1-m)x+2>0在x∈[0,+∞)恒成立.
①△<0,即[4(1-m)]2-8<0,解得:;

解出:.又時,經(jīng)驗證不合題意
總之,
點評:本題是二次函數(shù)的一道綜合題,考查到了分類討論的思想,對分析轉化的推理能力要求較高.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案