【題目】某學(xué)校為了制定治理學(xué)校門口上學(xué)、放學(xué)期間家長(zhǎng)接送孩子亂停車現(xiàn)象的措施,對(duì)全校學(xué)生家長(zhǎng)進(jìn)行了問(wèn)卷調(diào)查.根據(jù)從中隨機(jī)抽取的50份調(diào)查問(wèn)卷,得到了如下的列聯(lián)表:

同意限定區(qū)域停車

不同意限定區(qū)域停車

合計(jì)

20

5

25

10

15

25

合計(jì)

30

20

50

則認(rèn)為“是否同意限定區(qū)域停產(chǎn)與家長(zhǎng)的性別有關(guān)”的把握約為__________

附:,其中.

0.050

0.005

0.001

3.841

7.879

10.828

【答案】99.5%.

【解析】分析:利用公式求得K2,與臨界值比較,即可得到結(jié)論.

詳解:因?yàn)?/span>K2= ≈8.333

P(k2≥7.789)=0.005=0.5%.

故答案為:99.5%.

所以,我們有99.5%的把握恩威是否同意限定區(qū)域停車與家長(zhǎng)的性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績(jī)不低于76的為優(yōu)良.

(1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)將頻率視為概率.根據(jù)樣本估計(jì)總體的思想,在該校學(xué)生中任選3人進(jìn)行體質(zhì)健康測(cè)試,求至少有1人成績(jī)是“優(yōu)良”的概率;
(3)從抽取的12人中隨機(jī)選取3人,記ξ表示成績(jī)“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn= (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog3an , 求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電腦公司有6名產(chǎn)品推銷員,其工作年限與推銷金額數(shù)據(jù)如下表:

推銷員編號(hào)

1

2

3

4

5

工作年限/年

3

5

6

7

9

推銷金額/萬(wàn)元

2

3

3

4

5

(1)求年推銷金額關(guān)于工作年限的線性回歸方程;

(2)若第6名推銷員的工作年限為11年,試估計(jì)他的年推銷金額.

附:線性回歸方程中,,,其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線為參數(shù)),為參數(shù)).

(1)化的參數(shù)方程為普通方程,并說(shuō)明它們分別表示什么曲線;

(2)若上的點(diǎn)對(duì)應(yīng)的參數(shù)為上的動(dòng)點(diǎn),求的中點(diǎn)到直線為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+x2﹣2ax+1(a為常數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對(duì)任意的a∈(1, ),都存在x0∈(0,1]使得不等式f(x0)+lna>m(a﹣a2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電腦公司有6名產(chǎn)品推銷員,其工作年限與推銷金額數(shù)據(jù)如下表:

推銷員編號(hào)

1

2

3

4

5

工作年限/年

3

5

6

7

9

推銷金額/萬(wàn)元

2

3

3

4

5

(1)求年推銷金額關(guān)于工作年限的線性回歸方程;

(2)若第6名推銷員的工作年限為11年,試估計(jì)他的年推銷金額.

附:線性回歸方程中,,其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a為實(shí)數(shù).
(1)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,求a的取值范圍;
(2)若g(x)在(﹣1,+∞)上是單調(diào)增函數(shù),試求f(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案