11.已知ξ的分布列如下:
ζ1234
p$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{6}$$\frac{1}{4}$
并且η=3ξ+1,則方差Dη=( 。
A.$\frac{179}{16}$B.$\frac{143}{16}$C.$\frac{179}{48}$D.$\frac{136}{48}$

分析 由題意及隨機變量ξ的分布列,可以先利用期望定義求出期望Eξ的值,最后根據(jù)方差的定義求出其方差即可.

解答 解:由于Eξ=1×$\frac{1}{4}$+2×$\frac{1}{3}$+3×$\frac{1}{6}$+4×$\frac{1}{4}$=$\frac{29}{12}$,
則Eξ2=1×$\frac{1}{4}$+4×$\frac{1}{3}$+9×$\frac{1}{6}$+16×$\frac{1}{4}$=$\frac{85}{12}$,
∴Dξ=Eξ2-(Eξ)2=$\frac{179}{144}$,
又由η=3ξ+1,Dη=32
故方差Dη=9×$\frac{179}{144}$=$\frac{179}{16}$
故選:A.

點評 本題主要考查了離散型隨機變量的期望公式與方差公式,同時考查了分布列等知識,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知各頂點都在一個球面上的正四棱柱(側(cè)棱垂直于底面且底面為正方形的四棱柱)的高為2,這個球的表面積為6π,則這個正四棱柱的體積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在平行六面體ABCD-A${\;}_{{1}_{\;}}$B1C1D1中,$\overrightarrow{A{C}_{1}}$=x$\overrightarrow{AB}$+2y$\overrightarrow{BC}$+3z$\overrightarrow{{C}_{1}C}$,則x+y+z=( 。
A.1B.$\frac{7}{6}$C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,輸出的T的值是( 。
A.47B.48C.49D.50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.圓柱形容器內(nèi)盛有高度為8cm的水,若放入三個相同的球(球的半徑與圓柱的底面半徑相同)后,水恰好淹沒最上面的球(如圖),則球的半徑是( 。
A.$\sqrt{3}$cmB.2 cmC.3 cmD.4 cm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列點不在直線$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))上的是( 。
A.(-1,2)B.(2,-1)C.(3,-2)D.(-3,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知點M的直角坐標為(-3,-3,3),則它的柱坐標為( 。
A.$(3\sqrt{2},\frac{π}{4},3)$B.$(3\sqrt{2},\frac{3π}{4},1)$C.$(3\sqrt{2},\frac{5π}{4},3)$D.$(3\sqrt{2},\frac{7π}{4},1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知$|{\vec a}|=3,|{\vec b}|=4,\vec a•\vec b=-6\sqrt{3}$.求:
(Ⅰ)$\vec a與\vec b$的夾角θ;
(Ⅱ)$|{\vec a+\vec b}|$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={x|y=lg(-x2+2x+3)},且A∩B=∅,則集合B的可能是( 。
A.{2,5}B.(-∞,-1)C.(1,2)D.{x|x2≤1}

查看答案和解析>>

同步練習冊答案