【題目】根據(jù)下列條件,求直線的方程:
(Ⅰ)過直線l1:2x﹣3y﹣1=0和l2:x+y+2=0的交點,且垂直于直線2x﹣y+7=0;
(Ⅱ)過點(﹣3,1),且在兩坐標軸上的截距之和為﹣4.
科目:高中數(shù)學 來源: 題型:
【題目】某學生在一門功課的22次考試中,所得分數(shù)莖葉圖如圖所示,則此學生該門功課考試分數(shù)的極差與中位數(shù)之和為( )
A.117
B.118
C.118.5
D.119.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界. 已知函數(shù)f(x)=1+a( )x+( )x;g(x)=
(Ⅰ)當a=1時,求函數(shù)f(x)值域并說明函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù)?
(Ⅱ)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)已知m>﹣1,函數(shù)g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(Ⅰ)證明:BE⊥DC;
(Ⅱ)求直線BE與平面PBD所成角的正弦值;
(Ⅲ)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術(shù)節(jié)對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,試判斷函數(shù)的零點個數(shù);
(2)若函數(shù)在上為增函數(shù),求整數(shù)的最大值,(可能要用的數(shù)據(jù): ; ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直.EF∥AC,AB= ,CE=EF=1. (Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)證明f(x)在(0,+∞)上單調(diào)遞增;
(2)是否存在實數(shù)a使得f(x)的定義域、值域都是 ,若存在求出a的值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點,則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com