5.集合{2,4}的真子集有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

分析 若集合A中有n個(gè)元素,則集合A中有2n-1個(gè)真子集.

解答 解:集合{2,4}的真子集有:22-1=3個(gè).
故選:B.

點(diǎn)評(píng) 本題考查集合的真子集的個(gè)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意真子集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=2x+log2x,則f'(1)=2ln2+$\frac{1}{ln2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)為F1,F(xiàn)2,A點(diǎn)在橢圓上,離心率$\frac{\sqrt{2}}{2}$,AF2與x軸垂直,且|AF2|=$\sqrt{2}$.
(1)求橢圓的方程;
(2)若點(diǎn)A在第一象限,過點(diǎn)A作直線l,與橢圓交于另一點(diǎn)B,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的通項(xiàng)公式是an=24-2n,在下列各數(shù)中,( 。┎皇莧an}的項(xiàng).
A.-2B.0C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.小明和小剛正在做擲骰子游戲,兩人各擲一枚骰子,當(dāng)兩枚骰子點(diǎn)數(shù)之和為奇數(shù)時(shí),小剛得1分,否則小明得1分.這個(gè)游戲公平嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+6x+3,(x≤0)}\\{-3x+3,(0<x<1)}\\{-{x}^{2}+4x-3,(x≥1)}\end{array}\right.$
(1)畫出函數(shù)的圖象 (2)根據(jù)圖象寫出f(x)單調(diào)區(qū)間
(3)利用單調(diào)性定義證明f(x)在(-∞,-3]上減少的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,直三棱柱(側(cè)棱垂直于底面)ABC-A1B1C1中,$CA=CB=\frac{1}{2}C{C_1}$,點(diǎn)D棱AA1的中點(diǎn),且C1D⊥BD.
(1)求證:CA⊥CB;
(2)若CA=1,求四棱錐C1-A1B1BD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow a,\overrightarrow b$為非零向量,滿足$({\overrightarrow a-2\overrightarrow b})⊥\overrightarrow a;({\overrightarrow b-2\overrightarrow a})⊥\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若四邊形ABCD滿足$\overrightarrow{AB}•\overrightarrow{BC}<0$,$\overrightarrow{CD}•\overrightarrow{DA}<0$,$\overrightarrow{BC}•\overrightarrow{CD}<0$,$\overrightarrow{DA}$$•\overrightarrow{AB}$<0,則該四邊形為( 。
A.空間四邊形B.任意的四邊形C.梯形D.平行四邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案