已知角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊在x軸正半軸上,點(diǎn)(1,2
2
)在α的終邊上.
(1)求sinα的值;
(2)求cos2α的值.
考點(diǎn):任意角的三角函數(shù)的定義,同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:(1)直接利用任意角的三角函數(shù)的定義,求解即可.
(2)利用二倍角公式求解即可.
解答: 解:(1)角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊在x軸正半軸上,點(diǎn)(1,2
2
)在α的終邊上.
x=1,y=2
2
,r=3,
sinα=
y
r
=
2
2
3

(2)cos2α=1-2sin2α=1-2×(
2
2
3
)2
=-
7
9
點(diǎn)評(píng):本題考查任意角的三角函數(shù)的定義的應(yīng)用,二倍角的余弦函數(shù),考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax-ex,a∈R,e為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)f(x)存在兩個(gè)零點(diǎn),求a的取值范圍;
(2)若對(duì)任意x∈R,a>0.f(x)≤a2-ka恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(
3
sinx,cosx),
b
=(cosx,cosx),且函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期及最大值;
(2)若f(θ+
π
12
)=1,且θ為銳角,求sinθ+cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把所有正整數(shù)按上小下大,左小右大的原則排成如圖所示的數(shù)表,其中第i行共有2i-1個(gè)正整數(shù).設(shè)aij(i、j∈N*)表示位于這個(gè)數(shù)表中從上往下數(shù)第i行,從左往右數(shù)第j個(gè)數(shù).
(Ⅰ)若i=6,j=8,求aij的值;
(Ⅱ)記An=a11+a21+a31+…+an1(n∈N*),試比較An與n2-1的大小,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

地震規(guī)模的大小通常用芮氏等級(jí)表示.已知芮氏等級(jí)每增加1級(jí),地震振幅強(qiáng)度約增加為原來(lái)的10倍,能量釋放強(qiáng)度約增加為原來(lái)的32倍.現(xiàn)假設(shè)有兩次地震,所釋放的能量約相差100000倍,依上述性質(zhì)則地震振幅強(qiáng)度約相差幾倍?(lg2≈0.3010)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=x4-4x+m在區(qū)間[0,2]上任取三個(gè)數(shù)a,b,c,都存在f(a),f(b),f(c)為邊長(zhǎng)的三角形,則m的取值范圍是( 。
A、m>3B、m>6
C、m>8D、m>14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在一個(gè)直角三角形的草地建一個(gè)長(zhǎng)方形ABCD的體育場(chǎng)
(1)長(zhǎng)方形的一邊AB=x(m),那么AD=y(m),試寫出y是x的函數(shù)關(guān)系式
(2)設(shè)長(zhǎng)方形ABCD的面積為S(m2),當(dāng)x取何值時(shí),S的值最大?最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n-2an+20.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)令bn=log 
2
3
a1-1
9
+log 
2
3
a2-1
9
+…+log 
2
3
an-1
9
,求{
1
bn
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求傾斜角為直線y=-
3
x+1的傾斜角的一半,且分別滿足下列條件的直線方程.
(1)經(jīng)過(guò)點(diǎn)(-4,1);
(2)在y軸上的截距為-10.

查看答案和解析>>

同步練習(xí)冊(cè)答案