分析 (Ⅰ)連接OE,BE,證明:OD⊥BE,AE⊥BE,即可證明OD∥AC;
(Ⅱ)若OD交圓O于一點(diǎn)M,且∠A=60°,求出OD=2OB,即可求$\frac{OM}{OD}$的值.
解答 (Ⅰ)證明:連接OE,BE,則
∵DB,DE分別切圓O于點(diǎn)B,E,
∴BD=DE,
∵OE=OB,
∴OD⊥BE,
∵AB為圓O的直徑,
∴AE⊥BE,
∴OD∥AC;
(Ⅱ)解:∵OD∥AC,∠A=60°,
∴∠BOD=60°,
∵圓O切BD于點(diǎn)B,
∴OB⊥BD.
∴OD=2OB,
∵OM=OB,
∴OD=3OM,
∴$\frac{OM}{OD}$=$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查圓的切線的性質(zhì),考查特殊角的三角函數(shù),考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$-2 | B. | 3 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8個(gè) | B. | 7個(gè) | C. | 6個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,4] | B. | [0,4) | C. | (0,4] | D. | (0,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{{\sqrt{7}}}{2}$ | D. | $\frac{{\sqrt{7}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -8 | B. | -6 | C. | -5 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{4}{3}π$ | B. | $-\frac{5}{3}π$ | C. | $-\frac{7}{6}π$ | D. | $-\frac{11}{6}π$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com