(本題滿分12分)已知橢圓C:的焦點在y軸上,且離心率為.過點M(0,3)的直線l與橢圓C相交于兩點A、B. (1)求橢圓C的方程;(2)設(shè)P為橢圓上一點,且滿足(O為坐標(biāo)原點),當(dāng)||<時,求實數(shù)λ的取值范圍.
(Ⅰ) (Ⅱ) (-2,)∪(,2)
(1)由題知a2=m,b2=1,∴ c2=m-1∴ ,解得m=4.
∴ 橢圓的方程為.……4分
(2)當(dāng)l的斜率不存在時,,不符合條件. ………5分
設(shè)l的斜率為k,則l的方程為y=kx+3.
設(shè)A(x1,y1),B(x2,y2),P(x0,y0),
聯(lián)立l和橢圓的方程: 消去y,整理得(4+k2)x2+6kx+5=0,
∴ Δ=(6k)2-4×(4+k2)×5=16k2-80>0,解得k2>5.
且,
∴ =,
由已知有,整理得13k4-88k2-128<0,解得 ,
∴ 5<k2<8.……9分∵ ,即(x1,y2)+(x2,y2)= λ(x0,y0),
∴ x1+x2=λx0,y1+y2=λy0,
當(dāng)λ=0時,x1+x2=,,
顯然,上述方程無解.
當(dāng)λ≠0時,=,.
∵ P(x0,y0)在橢圓上,∴ ,
化簡得.由 5<k2<8,可得3<2<4,∴ λ∈(-2,-)∪(,2).
即λ的取值范圍為(-2,)∪(,2)……12分
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題
(本題滿分12分)已知△的三個內(nèi)角、、所對的邊分別為、、.,且.(1)求的大;(2)若.求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補課階段考試數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題
(本題滿分12分)
已知橢圓:的長軸長是短軸長的倍,,是它的左,右焦點.
(1)若,且,,求、的坐標(biāo);
(2)在(1)的條件下,過動點作以為圓心、以1為半徑的圓的切線(是切點),且使,求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量與是共線向量
(1)求橢圓的離心率
(2)設(shè)Q是橢圓上任意一點,分別是左右焦點,求的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com