已知函數(shù)f(x)=-
1
3
x3-
1
2
ax2
+2x,討論f(x)的單調(diào)性..
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可判斷函數(shù)的單調(diào)性.
解答: 解:f′(x)=x2-ax+2,
①當(dāng)△=a2-8≤0即-2
2
≤a≤2
2
時f(x)=-
1
3
x3-
1
2
ax2
+2x 在R內(nèi)單調(diào)遞增,
②當(dāng)△=a2-8>0即a<-2
2
或a>2
2

解f′(x)=0得x1=
a-
a2-8
2
,x2=
a+
a2-8
2
,
∴函數(shù)的增區(qū)間為(-∞,
a-
a2-8
2
)和(
a+
a2-8
2
,+∞),
減區(qū)間為[
a-
a2-8
2
,
a+
a2-8
2
].
點(diǎn)評:本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,注意討論a的取值范圍對函數(shù)導(dǎo)數(shù)的影響.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖中陰影部分表示的集合是(  )
A、B∩CUA
B、A∩(CUB)
C、CU(A∩B)
D、CU(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合B={x∈Z|-3<2x-1<5}用列舉法表示集合B,則是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=BB1,點(diǎn)D是AB的中點(diǎn),
(1)求證:BC1∥平面DCA1;
(2)設(shè)點(diǎn)E在線段B1C1上,B1E=λ•B1C1,且使直線BE和平面ABB1A1所成的角的正弦值為
10
10
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

成都七中學(xué)生會經(jīng)過綜合考評,新招了14名男生和6名女生到學(xué)生會工作,莖葉圖表示這20名同學(xué)的測試成績(單位:分),規(guī)定:成績在180分以上者到“M部門”工作;成績在180分以下者到“N部門”工作.
(1)求男生成績的中位數(shù)及女生成績的平均值;
(2)如果用分層抽樣的方法從“M部門”和“N部門”共選取5人,再從這5人中選2人,求至少有一人是“M部門”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有三個新興城鎮(zhèn),分別位于A、B、C三個點(diǎn)處,且AB=AC=13千米,BC=10千米.今計劃合建一個中心醫(yī)院.為同時方便三個城鎮(zhèn),需要將醫(yī)院建在BC的垂直平分線上的點(diǎn)P處.若希望點(diǎn)P到三個城鎮(zhèn)距離的平方和最小,點(diǎn)P應(yīng)該位于何處?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程
1+a-x
-a+
x
=0有實(shí)數(shù)解,求正整數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3,且f(6)=-216.
(1)求實(shí)數(shù)a的值;
(2)分解因式f(m)-f(n);
(3)證明f(x)在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)解不等式:|3x-1|≤2;
(Ⅱ)設(shè)a,b,c∈R+,求證:
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c)).

查看答案和解析>>

同步練習(xí)冊答案