17.函數(shù)y=[cos(x+$\frac{π}{4}$)+sin(x+$\frac{π}{4}$)][cos(x+$\frac{π}{4}$)-sin(x+$\frac{π}{4}$)]在一個周期內(nèi)的圖象是( 。
A.B.C.D.

分析 化簡函數(shù)y,得出函數(shù)y的一個周期為π,且與y=sin2x的圖象關(guān)于x軸對稱,由此得出正確的選項.

解答 解:∵函數(shù)y=[cos(x+$\frac{π}{4}$)+sin(x+$\frac{π}{4}$)][cos(x+$\frac{π}{4}$)-sin(x+$\frac{π}{4}$)]
=cos2(x+$\frac{π}{4}$)-sin2(x+$\frac{π}{4}$)
=cos(2x+$\frac{π}{2}$)
=-sin2x,
∴函數(shù)y的一個周期為π,且與y=sin2x的圖象關(guān)于x軸對稱;
∴滿足條件的是選項B.
故選:B.

點評 本題考查了三角恒等變換與三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.有一個幾何體的三視圖及其尺寸如圖單位(cm),則該幾何體的表面積及體積為( 。
A.4+4$\sqrt{3}$cm2,$\frac{16\sqrt{3}}{3}$cm3B.4+4$\sqrt{3}$cm2,$\frac{16\sqrt{2}}{3}$cm3C.12cm2,$\frac{16\sqrt{3}}{3}$cm3D.12cm2,$\frac{16\sqrt{2}}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.把下面在平面內(nèi)成立的結(jié)論類比地推廣到空間,結(jié)論還正確的是( 。
A.如果一條直線與兩條平行線中的一條相交,則必與另一條相交
B.如果兩條直線同時與第三條直線垂直,則這兩條直線平行
C.如果兩條直線同時與第三條直線相交,則這兩條直線相交
D.如果一條直線與兩條平行線中的一條垂直,則必與另一條垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.點F($\sqrt{3m+3}$,0)到直線$\sqrt{3}$x-$\sqrt{3m}$y=0的距離為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.正方體ABCD-A1B1C1D1中,$\overrightarrow{BK}$=$\frac{1}{4}$$\overrightarrow{B{B}_{1}}$,$\overrightarrow{CM}$=$\frac{1}{2}$$\overrightarrow{C{C}_{1}}$,則平面AKM與平面ABCD所成的銳二面角的正切值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)f(x)=ex(ax2+x+1),且曲線y=f(x)在x=1處的切線與x軸平行.
(I)求a的值,并討論f(x)的單調(diào)性;
(II)若θ∈[0,$\frac{π}{2}$],且|f(cosθ)-f(sinθ)|≤m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知f(x)=$\frac{2x}{x+1}$,則f($\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…f(${\frac{1}{2}}$)+f(1)+f(2)+…+f(2016)=4031.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若(1-3x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),則$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$的值為(  )
A.-1B.-2C.2D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知1<x<2,a=$\frac{lnx}{x}$,b=$\frac{ln{x}^{2}}{{x}^{2}}$,c=($\frac{lnx}{x}$)2,則a,b,c的大小關(guān)系為(用“<”連接):c<a<b.

查看答案和解析>>

同步練習冊答案