設(shè)拋物線的焦點(diǎn)為,其準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)的直線交拋物線于兩點(diǎn).
(1)若直線的斜率為,求證:;
(2)設(shè)直線的斜率分別為,求的值.

(1)詳見試題解析;(2)

解析試題分析:(1)將直線方程代入拋物線方程消元得一元二次方程,利用韋達(dá)定理及向量數(shù)量積坐標(biāo)公式驗(yàn)證;(2)設(shè)直線與拋物線聯(lián)立得,用表示,再化簡.
試題解析:(1) 與拋物線方程聯(lián)立得 設(shè)
;
(2)設(shè)直線與拋物線聯(lián)立得,
..
考點(diǎn):直線與拋物線位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)雙曲線以橢圓的兩個(gè)焦點(diǎn)為焦點(diǎn),且雙曲線的一條漸近線是,
(1)求雙曲線的方程;
(2)若直線與雙曲線交于不同兩點(diǎn),且都在以為圓心的圓上,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)為,焦點(diǎn)在軸上,若右焦點(diǎn)到直線的距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn)、,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以點(diǎn)F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)的橢圓C經(jīng)過點(diǎn)(1,)。
(I)求橢圓C的方程;
(II)過P點(diǎn)分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知經(jīng)過點(diǎn)A(-4,0)的動(dòng)直線l與拋物線G:相交于B、C,當(dāng)直線l的斜率是時(shí),
(Ⅰ)求拋物線G的方程;
(Ⅱ)設(shè)線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于兩點(diǎn),當(dāng)圓的半徑最長是,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)和上下兩個(gè)頂點(diǎn)是一個(gè)邊長為2且∠F1B1F2的菱形的四個(gè)頂點(diǎn).
(1)求橢圓的方程;
(2)過右焦點(diǎn)F2 ,斜率為)的直線與橢圓相交于兩點(diǎn),A為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn)、,線段的中點(diǎn)為,記直線的斜率為.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)的坐標(biāo)分別是、,直線相交于點(diǎn),且它們的斜率之積為
(1)求點(diǎn)軌跡的方程;
(2)若過點(diǎn)的直線與(1)中的軌跡交于不同的兩點(diǎn),試求面積的取值范圍(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

同步練習(xí)冊答案