將三角形紙片(△ABC)按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF.已知AB=AC=3,BC=4,若以點(diǎn)B′、F、C為頂點(diǎn)的三角形與△ABC相似,那么BF的長(zhǎng)度是   
【答案】分析:由于折疊前后的圖形不變,要考慮△B′FC與△ABC相似時(shí)的對(duì)應(yīng)情況,分兩種情況討論:①△B′FC∽△ABC時(shí),②△B′CF∽△BCA時(shí),最后利用相似三角形對(duì)應(yīng)邊成比例即得BF的長(zhǎng)度.
解答:解:根據(jù)△B′FC與△ABC相似時(shí)的對(duì)應(yīng)情況,有兩種情況:
①△B′FC∽△ABC時(shí),=
又因?yàn)锳B=AC=3,BC=4,B'F=BF,
所以 =
解得BF=;
②△B′CF∽△BCA時(shí),=,
又因?yàn)锳B=AC=3,BC=4,B'F=CF,BF=B′F,
所以BF=4-B′F,
解得BF=2.
故BF的長(zhǎng)度是 或2.
故答案為:或2.
點(diǎn)評(píng):本題考查對(duì)相似三角形性質(zhì)的理解:(1)相似三角形周長(zhǎng)的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比、對(duì)應(yīng)角平分線的比都等于相似比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)將三角形紙片(△ABC)按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF.已知AB=AC=3,BC=4,若以點(diǎn)B′、F、C為頂點(diǎn)的三角形與△ABC相似,那么BF的長(zhǎng)度是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

將三角形紙片(△ABC)按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF.已知AB=AC=3,BC=4,若以點(diǎn)B′、F、C為頂點(diǎn)的三角形與△ABC相似,那么BF的長(zhǎng)度是 ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年山東省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

將三角形紙片(△ABC)按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF.已知AB=AC=3,BC=4,若以點(diǎn)B′、F、C為頂點(diǎn)的三角形與△ABC相似,那么BF的長(zhǎng)度是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年山東省臨沂一中高考數(shù)學(xué)真題模擬訓(xùn)練試卷(三)(解析版) 題型:解答題

將三角形紙片(△ABC)按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B′,折痕為EF.已知AB=AC=3,BC=4,若以點(diǎn)B′、F、C為頂點(diǎn)的三角形與△ABC相似,那么BF的長(zhǎng)度是   

查看答案和解析>>

同步練習(xí)冊(cè)答案