設(shè)數(shù)列{an}是等差數(shù)列,若a3+a4+a5=12,則a1+a2+…+a7=
 
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由a3+a4+a5=12,可得 a4=4,故有 a1+a2+…+a7=7a4,運算求得結(jié)果.
解答: 解:∵數(shù)列{an}是等差數(shù)列,a3+a4+a5=12,
∴3a4=12,
∴a4=4.
∴a1+a2+…+a7=7a4=28.
故答案為:28.
點評:本題主要考查等差數(shù)列的定義和性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

四邊形ABCD是邊長為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.
(1)以向量
AB
方向為側(cè)視方向,畫出側(cè)視圖并標(biāo)明長度(要求說明理由);
(2)求證:CN∥平面AMD;
(3)(理科做,文不做)求面AMN與面NBC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
sin(π-α)•cos(2π-α)•tan(-π+α)
sin(-π+α)•tan(-α+3π)

(1)化簡f(α);
(2)若f(α)=
1
8
,且
π
4
<α<
π
2
,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1+x)7的展開式中x2的系數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
4
)
,在下列四個命題中:
①f(x)的最小正周期是4π;
②f(x)的圖象可由g(x)=sin2x的圖象向右平移
π
4
個單位長度得到;
③若x1≠x2,且f(x1)=f(x2)=-1,則x1-x2=kπ(k∈z,且k≠0);
④直線x=-
π
8
是函數(shù)f(x)圖象的一條對稱軸.
其中正確命題的序號是
 
(把你認(rèn)為正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=mx2+x-2013在區(qū)間(-∞,1)上是單調(diào)函數(shù),則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)的坐標(biāo)滿足條件
x≤1
y≤2
2x+y-2≥0
,則
y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:min{a,b}=
a,a≤b
b,a>b
,在區(qū)域
0≤x≤2
0≤y≤6
內(nèi)任取一點P(x,y),則x、y滿足min{x2+x+2y,x+y+4}=x2+x+2y的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈(0,
π
2
)且f(cosx)=sin
x
2
,則f(
1
2
)=( 。
A、
2
5
B、
1
5
C、
1
2
D、
7
10

查看答案和解析>>

同步練習(xí)冊答案