8.已知函數(shù)f(x)=ex-ex,g(x)=2ax+a,其中e為自然對數(shù)的底數(shù),a∈R.
(1)求證:f(x)≥0;
(2)若存在x0∈R,使f(x0)=g(x0),求a的取值范圍;
(3)若對任意的x∈(-∞,-1),f(x)≥g(x)恒成立,求a的最小值.

分析 (1)判斷f(x)的單調(diào)性,利用單調(diào)性求出f(x)的最小值,即可得出結(jié)論;
(2)令f(x)=g(x),分離參數(shù)得a=$\frac{{e}^{x}-ex}{2x+1}$,求出右側(cè)函數(shù)的值域即為a的范圍;
(3)令f(x)≥g(x),分離參數(shù)得a≥$\frac{{e}^{x}-ex}{2x+1}$,則右側(cè)函數(shù)在(-∞,-1)上的最大值為a的最小值.

解答 解:(1)f′(x)=ex-e,
∴當x>1時,f′(x)>0,當x<1時,f′(x)<0,
∴f(x)在(-∞,1)上是減函數(shù),在(1,+∞)上是增函數(shù),
∴fmin(x)=f(1)=0,
∴f(x)≥0.
(2)令f(x)=g(x)得a=$\frac{{e}^{x}-ex}{2x+1}$,
設h(x)=$\frac{{e}^{x}-ex}{2x+1}$,則h′(x)=$\frac{{e}^{x}(2x-1)}{(2x+1)^{2}}$,
∴當x>$\frac{1}{2}$時,h′(x)>0,當x<$\frac{1}{2}$時,h′(x)<0,
∴h(x)在(-∞,$\frac{1}{2}$)上是減函數(shù),在($\frac{1}{2}$,+∞)上是增函數(shù),
∵$\underset{lim}{x→-\frac{1}{2}-}$h(x)=-∞,$\underset{lim}{x→-∞}$h(x)=-$\frac{e}{2}$,h(1)=0,$\underset{lim}{x→-\frac{1}{2}+}$h(x)=+∞,$\underset{lim}{x→+∞}$h(x)=+∞.
∵存在x0∈R,使f(x0)=g(x0),∴a=$\frac{{e}^{x}-ex}{2x+1}$有解.
∴a≥0或a<-$\frac{e}{2}$.
(3)∵當x∈(-∞,-1)時,f(x)≥g(x)恒成立,即ex-ex≥a(2x+1)在(-∞,-1)上恒成立,
∴a≥$\frac{{e}^{x}-ex}{2x+1}$在(-∞,-1)上恒成立.
由(2)可知h(x)=$\frac{{e}^{x}-ex}{2x+1}$在(-∞,-1)上是減函數(shù),
且$\underset{lim}{x→-∞}$h(x)=-$\frac{e}{2}$,
∴a≥-$\frac{e}{2}$.
即a的最小值為-$\frac{e}{2}$.

點評 本題考查了導數(shù)與函數(shù)單調(diào)性的關系,函數(shù)最值的計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.n個連續(xù)自然數(shù)按規(guī)律排成如圖,則表中從2015到2017的箭頭方向依次為( 。
A.↓→B.→↑C.↑→D.→↓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知二次函數(shù)f(x)=ax2+2x+c(x∈R)的值域為[0,+∞),則a+c的最小值是( 。
A.2B.4$\sqrt{2}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在△ABC中,B=120°,AC=7,AB=5,則△ABC的面積為(  )
A.15$\sqrt{3}$B.3$\sqrt{3}$C.$\frac{{15\sqrt{3}}}{4}$D.$\frac{{15\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設a=0.80.8,b=0.81.2,c=1.20.8則( 。
A.c>a>bB.c>b>aC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,正方形ABCD的邊長為1,P、Q分別為AB,DA上的動點,設AP=x,AQ=y.
(1)當x=$\frac{2}{3}$,y=$\frac{1}{2}$,求∠PCQ的大;
(2)若△APQ的周長為2,
①求x,y之間的函數(shù)關系式y(tǒng)=f(x);
②設△PCQ的面積為S,求S的最小值.
(參考公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知曲線f(x)=(x+a)lnx在點(1,f(1))處的切線與曲線2x-y+2=0平行,則實數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知△ABC的三條邊為a,b,c,滿足a+b≥2c,求證:c≤60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.不等式|x+2|>|x-1|的解集為(-$\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習冊答案