已知集合P={x|x≥0},Q={x|
x+1
x-2
≥0},則P∩(∁RQ)=(  )
A、(-∞,1)
B、(-∞,1]
C、(-1,0)
D、[0,2]
考點:交、并、補集的混合運算
專題:集合
分析:求出集合Q,然后根據(jù)集合的基本運算即可求出結論
解答: 解:由題意可知Q={x|x≤-1或x>2},則∁RQ={x|-1<x≤2},
∴P∩(∁RQ)={x|0≤x≤2}
故選:D.
點評:本題主要考查集合交集與補集的運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知不等式
x-2
ax-1
>0的解集為(-1,2),則二項式(ax-
1
x2
6展開式的常數(shù)項是( 。
A、5B、-5C、15D、25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式的值:
(1)(
1
4
-2+(
1
6
6
 
1
3
+
3
+
2
3
-
2
-(1.03)0•(-
6
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx+
1
2
cos2x,若將其圖象向右平移φ(φ>0)個單位所得的圖象關于原點對稱,則φ的最小值為( 。
A、
π
6
B、
6
C、
π
12
D、
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
2-x
+
1
x
的定義域是( 。
A、(-∞,2]
B、(-∞,0)∪(  ),2]
C、(0,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x+2y+3z=2,則x2+y2+z2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinωxcosωx+2
3
sin2ωx-
3
(ω>0)的最小正周期是π.
(Ⅰ)求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
3
個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,求y=g(x)的解析式及其在[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,|F1F2|=4,P是雙曲線右支上一點,直線PF2交y軸于點A,△AF1P的內切圓切邊PF1于點Q,若|PQ|=1,則雙曲線的漸近線方程為( 。
A、y=±
3
3
x
B、y=±3x
C、y=±
1
3
x
D、y=±
3
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知AB=4,AC=3,sinC=
2
3
3
,則∠B=
 

查看答案和解析>>

同步練習冊答案