6.已知單位向量$\overrightarrow{a}$,$\overrightarrow$夾角為銳角,對t∈R,|$\overrightarrow{a}$-t$\overrightarrow$|的取值范圍是[$\frac{\sqrt{3}}{2}$,+∞),若向量$\overrightarrow{c}$滿足($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0,則|$\overrightarrow{c}$|的最小值為$\frac{\sqrt{7}-\sqrt{3}}{2}$.

分析 根據(jù)|$\overrightarrow{a}$-t$\overrightarrow$|的最小值得出$\overrightarrow{a},\overrightarrow$的夾角為θ=60°,設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,$\overrightarrow{OC}=\overrightarrow{c}$,$\overrightarrow{OM}=2\overrightarrow{a}$,則$\overrightarrow{MC}$=$\overrightarrow{c}-2\overrightarrow{a}$,$\overrightarrow{BC}=\overrightarrow{c}-\overrightarrow$,由($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0得出C在以BM為直徑的圓P上,求出圓P的半徑和OP的長,從而得出|$\overrightarrow{c}$|的最小值.

解答 解:設(shè)$\overrightarrow{a},\overrightarrow$的夾角為θ,
∵|$\overrightarrow{a}-t\overrightarrow$|$≥\frac{\sqrt{3}}{2}$,
∴1+t2-2tcosθ≥$\frac{3}{4}$,即t2-2cosθ•t+$\frac{1}{4}$≥0.
∴△=4cos2θ-1=0,
∴cosθ=$\frac{1}{2}$.即單位向量$\overrightarrow{a}$,$\overrightarrow$夾角為60°.
設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,$\overrightarrow{OC}=\overrightarrow{c}$,$\overrightarrow{OM}=2\overrightarrow{a}$,
則$\overrightarrow{MC}$=$\overrightarrow{c}-2\overrightarrow{a}$,$\overrightarrow{BC}=\overrightarrow{c}-\overrightarrow$,
∵($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0,∴MC⊥BC.
∴C在以BM為直徑的圓P上.
∵OB=OA=1,∠AOB=60°,OM=2,
∴圓P的半徑r=BP=$\frac{1}{2}BM$=$\frac{\sqrt{3}}{2}$,OP=$\sqrt{O{B}^{2}+B{P}^{2}}$=$\frac{\sqrt{7}}{2}$.
∴OC的最小值為OP-r=$\frac{\sqrt{7}-\sqrt{3}}{2}$.
故答案為:$\frac{{\sqrt{7}-\sqrt{3}}}{2}$.

點評 本題考查了平面向量線性運算的幾何意義,平面向量的數(shù)量積運算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)=log2$\frac{1+ax}{1-x}$是(-b,b)上的奇函數(shù)(a≠-1),求a=1,b∈(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,用6種不同的顏色把圖中A,B,C,D4塊區(qū)域分開,若相鄰區(qū)域不能涂同一種顏色,則涂色方法共有480種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.演繹推理“①三角函數(shù)是周期函數(shù);②y=tanx是三角函數(shù);③y=tanx是周期函數(shù)”中的小前提是(  )
A.B.C.D.①和②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項和為Sn,若Sn-1是an與Sn的等比中項,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.α為第三象限角,cos2α=-$\frac{3}{5}$,則sin2α=$\frac{4}{5}$,tan($\frac{π}{4}$+2α)=$-\frac{1}{7}$,在以sin2α為首項,tan($\frac{π}{4}$+2α)為公差的等差數(shù)列{an}中,其前n項和達(dá)到最大時n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)化簡$\frac{{cos(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)}}$•sin(α-2π)•cos(2π-α)
(2)求值sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.圓與兩平行線x+3y-5=0,x+3y-3=0相切,圓心在直線2x+y+1=0,則這個圓的方程為${({x+\frac{7}{5}})^2}+{({y-\frac{9}{5}})^2}=\frac{1}{10}$ (化標(biāo)準(zhǔn)式).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.有一個不透明的袋子,裝有三個形狀完全相同的小球,球上分別編有數(shù)字1,2,3.
(Ⅰ)若逐個不放回的取兩次,求第一次取到球的編號為偶數(shù)且兩個球的編號之和能被3 整除的概率;
(Ⅱ)若有放回的取兩次,編號依次為a,b,求直線ax+by+1=0與圓x2+y2=$\frac{1}{9}$有公共點的概率.

查看答案和解析>>

同步練習(xí)冊答案