【題目】法國有個名人叫做布萊爾·帕斯卡,他認(rèn)識兩個賭徒,這兩個賭徒向他提出一個問題,他們說,他們下賭金之后,約定誰先贏滿5局,誰就獲得全部賭金700法郎,賭了半天,甲贏了4局,乙贏了3局,時間很晚了,他們都不想再賭下去了.假設(shè)每局兩賭徒輸贏的概率各占,每局輸贏相互獨立,那么這700法郎如何分配比較合理(

A.400法郎,乙300法郎B.500法郎,乙200法郎

C.525法郎,乙175法郎D.350法郎,乙350法郎

【答案】C

【解析】

通過分析甲可能獲勝的概率來分得獎金,假定再賭一局,甲獲勝的概率為;若再賭兩局,甲才獲勝的概率為,從而得甲獲勝的概率為,可得出獎金的分配金額.

假定再賭一局,甲獲勝的概率為;若再賭兩局,甲才獲勝的概率為,

∴甲獲勝的概率為,∴甲應(yīng)分得:(法郎),乙應(yīng)分得:(法郎).

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為為參數(shù)),圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于兩點,若點的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的內(nèi)角AB,C所對邊分別為a、b、c,且2acosC=2b-c

1)求角A的大。

2)若AB=3,AC邊上的中線SD的長為,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,四邊形是菱形,四邊形是正方形,,,點的中點.

(1)求證:平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,,,點,分別是線段,,的中點.

1)求證:平面;

2)在線段上有一點,若二面角的余弦值為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

(2)預(yù)測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計

駕齡不超過1年

22

8

30

駕齡1年以上

8

12

20

合計

30

20

50

能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

參考公式及數(shù)據(jù):,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)舉行的電腦知識競賽中,將高一年級兩個班參賽的學(xué)生成績進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一,第三,第四,第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.

(1)補齊圖中頻率分布直方圖,并求這兩個班參賽學(xué)生的總?cè)藬?shù);

(2)利用頻率分布直方圖,估算本次比賽學(xué)生成績的平均數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將所有的正奇數(shù)按以下規(guī)律分組,第一組:1;第二組:3,5,7;第三組:9,11,13,15,17; 表示n是第i組的第j個數(shù),例如,,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一批產(chǎn)品需要進行質(zhì)量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為.如果,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;如果,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗.假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為 ,即取出的每件產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨立.

1)求這批產(chǎn)品通過檢驗的概率;

2)已知每件產(chǎn)品的檢驗費用為50元,且抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質(zhì)量檢驗所需的費用記為X(單位:元),求的分布列及數(shù)學(xué)期望(保留一位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案