如圖,在△ABC中,∠B=90°,以AB為直徑的圓O交AC于D,過點(diǎn)D作圓O的切線交BC于E,AE交圓O于點(diǎn)F.求證:

(1)E是BC的中點(diǎn);
(2)AD·AC=AE·AF.

(1)見解析(2)見解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,四邊形的內(nèi)接四邊形,的延長(zhǎng)線與的延長(zhǎng)線交于點(diǎn),且.

(Ⅰ)證明:;
(Ⅱ)設(shè)不是的直徑,的中點(diǎn)為,且,證明:為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,連結(jié)AE,BE.證明:
(1)∠FEB=∠CEB;
(2)EF2=AD·BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平行四邊形ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,DE=CD.

(1)求證:△ABF∽△CEB;
(2)若△DEF的面積為2,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知圓O外有一點(diǎn)P,作圓O的切線PM,M為切點(diǎn),過PM的中點(diǎn)N,作割線NAB,交圓于A、B兩點(diǎn),連接PA并延長(zhǎng),交圓O于點(diǎn)C,連接PB交圓O于點(diǎn)D,若MC=BC.

(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,四面體DABC的體積為,且滿足 則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知P是圓O外一點(diǎn),PD為圓O的切線,D為切點(diǎn),割線PEF經(jīng)過圓心O,若PF=12,PD=4,求圓O的半徑長(zhǎng)和∠EFD的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是圓O的直徑,點(diǎn)C在圓O上,延長(zhǎng)BC到D使BC=CD,過C作圓O的切線交AD于E.若AB=6,ED=2,求BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC中,DE∥BC,DF∥AC,AE∶AC=3∶5,DE=6,求BF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案