二項(xiàng)式(3x-
1
x
5的展開(kāi)式中含x的項(xiàng)的系數(shù)為
 
.(用數(shù)字作答)
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:先求出二項(xiàng)式展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于1,求得r的值,即可求得展開(kāi)式中含x的項(xiàng)的系數(shù).
解答: 解:二項(xiàng)式(3x-
1
x
5的展開(kāi)式的通項(xiàng)公式為 Tr+1=
C
r
5
•(-1)r•35-r•x5-2r,
令5-2r=1,求得 r=2,
故展開(kāi)式中含x的項(xiàng)的系數(shù)為
C
2
5
×33=270,
故答案為:270.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四名優(yōu)等生保送到三所學(xué)校去,每所學(xué)校至少得一名,則不同的保送方案的總數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
f(x+1),  x≤2
3-x,  x>2
,則f(log35)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三角形ABC的邊長(zhǎng)為2,則
AB
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
mx2-(m-2)x+m-1
的值域是[0,+∞),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={-2,0,1},N={1,2,3,4,5},映射f:M→N使對(duì)任意的x∈M,都有x+f(x)+xf(x)是奇數(shù),則這樣的映射f的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(x1,ax1),B(x2,ax2)是函數(shù)y=ax(a>1)的圖象上任意不同兩點(diǎn),依據(jù)圖象可知,線段AB總是位于A、B兩點(diǎn)之間函數(shù)圖象的上方,因此有結(jié)論
ax1+ax2
2
a
x1+x2
2
成立.運(yùn)用類比思想方法可知,若點(diǎn)A(x1,sinx1),B(x2,sinx2)是函數(shù)y=sinx(x∈(0,π))的圖象上任意不同兩點(diǎn),則類似地有
 
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

邊長(zhǎng)為2的等邊三角形ABC中,若2
CD
=
DA
,
BE
=
EA
,則
BD
CE
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=ax2-2x+3在區(qū)間(-∞,4]上是減少的,那么實(shí)數(shù)a的取值范圍是( 。
A、0<a<
1
4
B、0<a≤
1
4
C、0≤a≤
1
4
D、a≤
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案