是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上運(yùn)動(dòng),則的最大值是_____
4
根據(jù)橢圓的幾何意義可得,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205007544715.png" style="vertical-align:middle;" />
所以當(dāng)且僅當(dāng)時(shí)取等號(hào)
所以,則
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A、B為橢圓的左、右頂點(diǎn),C(0,b),直線與X軸交于點(diǎn)D,與直線AC交于點(diǎn)P,且BP平分,則此橢圓的離心率為
A、  
B、  
C、  
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2軸的垂線與
橢圓的一個(gè)交點(diǎn)為P,若,則橢圓的離心率           。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定直線l與平面a成60°角,點(diǎn)P是平面a內(nèi)的一動(dòng)點(diǎn),且點(diǎn)p到直線l的距離為3,則動(dòng)點(diǎn)P的軌跡是( )
A.圓B.橢圓的一部分C.拋物線的一部分D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面上的動(dòng)點(diǎn)P(xy)及兩定點(diǎn)A(-2,0),B(2,0),直線PA,PB的斜率分別是k1k2,且k1·k2=-.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)已知直線lykxm與曲線C交于MN兩點(diǎn),且直線BM、BN的斜率都存在,并滿足kBM·kBN=-,求證:直線l過原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)  
已知橢圓的離心率為,且過點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)垂直于坐標(biāo)軸的直線與橢圓相交于、兩點(diǎn),若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn).證明:圓的半徑為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分) 設(shè)橢圓 C1)的一個(gè)頂點(diǎn)與拋物線 C2 的焦點(diǎn)重合,F(xiàn)1,F(xiàn)2 分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn) F2 的直線  與橢圓 C 交于 M,N 兩點(diǎn).
(I)求橢圓C的方程;
(II)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;
(III)若 AB 是橢圓 C 經(jīng)過原點(diǎn) O 的弦,MN//AB,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知以原點(diǎn)為中心,F(,0)為右焦點(diǎn)的橢圓C,過點(diǎn)F垂直于軸的弦AB長為4.
(1).求橢圓C的標(biāo)準(zhǔn)方程.
(2).設(shè)M、N為橢圓C上的兩動(dòng)點(diǎn),且,點(diǎn)P為橢圓C的右準(zhǔn)線與軸的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)已知橢圓中心為,右頂點(diǎn)為,過定點(diǎn)直線交橢圓于、兩點(diǎn).
(1)若直線軸垂直,求三角形面積的最大值;
(2)若,直線的斜率為,求證:;
(3)在軸上,是否存在一點(diǎn),使直線的斜率的乘積為非零常數(shù)?若存在,求出點(diǎn)的坐標(biāo)和這個(gè)常數(shù);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案