棱長均為3的三棱錐S-ABC,若空間一點P滿足
SP
=x
SA
+y
SB
+z
SC
(x+y+z=1)
,則|
SP
|
的最小值為
 
考點:棱錐的結(jié)構(gòu)特征
專題:平面向量及應(yīng)用,空間位置關(guān)系與距離
分析:欲求|
SP
|
的最小值,將其平方,先利用空間向量的數(shù)量積運算出|
SP
|
2,即
SP
2
的值,再將題中條件:x+y+z=1代入運算,最后利用基本不等式即可求得最小值.
解答: 解:∵空間一點P滿足
SP
=x
SA
+y
SB
+z
SC
(x+y+z=1)
,
∵x+y+z=1,
∴(x+y+z)2=x2+y2+z2+2xy+2xz+2yz=1,
又x2+y2+z2≥xy+xz+yz,
∴xy+xz+yz≤
1
3

∴x2+y2+z2+xy+xz+yz
=1-(xy+xz+yz)≥
2
3
,
SP
2
=(x
SA
+y
SB
+z
SC
2
=9(x2+y2+z2)+(2xy
SA
SB
+2xz
SA
SC
+2yz
SC
SB
)=9(x2+y2+z2+xy+xz+yz)≥6,
|
SP
|
的最小值為
6

故答案:
6
點評:本題主要考查了空間向量的數(shù)量積運算,以及基本不等式等知識,解答的關(guān)鍵是適當變形成可以利用基本不等式的形式.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,O為菱形ABCD對角線的交點,M為棱PD的中點,MA=MC.
(1)求證:PB∥平面AMC;
(2)求證:平面PBD⊥平面AMC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點P在正方體ABCD-A1B1C1D1的對角線BD1上,∠PDA=60°.
(1)求DP與CC1所成角的大;
(2)求DP與平面AA1D1D所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P在曲線y=x3-x+2上移動,設(shè)曲線在點P處切線的傾斜角是α,則α的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知R上的偶函數(shù)f(x)滿足對任意x∈R,f(x+2)=
1
f(x)
,且當x∈(0,1)時,f(x)=2-x,則f(
2015
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,D是邊BC上一點,
AB
=
a
,
AC
=
b
,|
BD
|=
1
5
|
DC
|,則
AD
=
 
(用
a
b
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“?x∈R,都有x2-2x+2≠0”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=2-2i,且|z|=1,則|z-z1|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中:
①若向量
a
,
b
共線,則向量
a
,
b
所在的直線平行;
②若向量
a
b
所在的直線為異面直線,則向量
a
,
b
一定不共面;
③若三個向量
a
,
b
,
c
兩兩共面,則向量
a
,
b
,
c
共面;
④共面的三個向量是指平行于同一個平面的三個向量;
⑤已知空間的三個不共線的向量
a
b
,
c
,則對于空間的任意一個向量
p
總存在實數(shù)x,y,z使得
p
=x
a
+y
b
+z
c

其中正確命題是
 

查看答案和解析>>

同步練習(xí)冊答案