【題目】國(guó)際油價(jià)在某一時(shí)間內(nèi)呈現(xiàn)出正弦波動(dòng)規(guī)律:P=Asin(ωπt+ )+60(美元)[t(天),A>0,ω>0],現(xiàn)采集到下列信息:最高油價(jià)80美元,當(dāng)t=150(天)時(shí)達(dá)到最低油價(jià),則ω=

【答案】
【解析】因?yàn)閲?guó)際油價(jià)在某一時(shí)間內(nèi)呈現(xiàn)出正弦波動(dòng)規(guī)律:P=Asin(ωπt+ )+60(美元)[t(天),A>0,ω>0],最高油價(jià)80美元,所以80=Asin(ωπt+ )+60,因?yàn)閟in(ωπt+ )≤1,所以A=20,
當(dāng)t=150(天)時(shí)達(dá)到最低油價(jià),即sin(150ωπ+ )=﹣1,
此時(shí)150ωπ+ =2kπ﹣ ,k∈Z,
因?yàn)棣兀?,所以令k=1,150ωπ+ =2π﹣ ,
解得ω=
所以答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是遞增的等差數(shù)列,a2 , a4是方程x2﹣5x+6=0的根. (I)求{an}的通項(xiàng)公式;
(II)求數(shù)列{ }的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)到定點(diǎn)F(0,1)和定直線l:y=﹣1的距離之和等于4的動(dòng)點(diǎn)的軌跡為曲線C,關(guān)于曲線C的幾何性質(zhì),給出下列四個(gè)結(jié)論: ①曲線C的方程為x2=4y;
②曲線C關(guān)于y軸對(duì)稱(chēng)
③若點(diǎn)P(x,y)在曲線C上,則|y|≤2;
④若點(diǎn)P在曲線C上,則1≤|PF|≤4
其中,所有正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=log cos( ﹣2x)的遞增區(qū)間是 (
A.[﹣ +kπ, +kπ](k∈Z)
B.[﹣ +kπ,kπ)(k∈Z)
C.[ +kπ, +kπ](k∈Z)
D.[ +kπ, +kπ)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓C: =1(0<b<3)的右焦點(diǎn)為F,P為橢圓上一動(dòng)點(diǎn),連接PF交橢圓于Q點(diǎn),且|PQ|的最小值為

(1)求橢圓方程;
(2)若 ,求直線PQ的方程;
(3)M,N為橢圓上關(guān)于x軸對(duì)稱(chēng)的兩點(diǎn),直線PM,PN分別與x軸交于R,S,求證:|OR||OS|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某地一天從6時(shí)到14時(shí)的溫度變化曲線近似滿(mǎn)足函數(shù)y=Asin(ωx+φ)+b.
(1)求這一天的最大溫差;
(2)寫(xiě)出這段曲線的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=5,a2=2,an=2an1+3an2 , (n≥3) (Ⅰ)證明數(shù)列{an﹣3an1}成等比數(shù)列,并求數(shù){an}列的通項(xiàng)公式an
(Ⅱ)若數(shù)列bn= (an+1+an),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求g(x)=f(3x+)﹣1在[﹣ , ]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+(a+2)x+5+a,a∈R.
(Ⅰ)若方程f(x)=0有一正根和一個(gè)負(fù)根,求a的取值范圍;
(Ⅱ)當(dāng)x>﹣1時(shí),不等式f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案