已知f(x)、g(x)分別是(-a,a)上的奇函數(shù)和偶函數(shù),求證:f(x)•g(x)是(-a,a)上的奇函數(shù).
考點:函數(shù)奇偶性的判斷,函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的奇偶性的定義即可證明.
解答: 證明:由于f(x)、g(x)分別是(-a,a)上的奇函數(shù)和偶函數(shù),
?x∈(-a,a),則f(-x)=-f(x),g(-x)=g(x).
∴f(-x)•g(-x)=-f(x)•g(x),
∴函數(shù)f(x)•g(x)是(-a,a)上的奇函數(shù).
點評:本題考查了函數(shù)的奇偶性的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動點”,若f[f(x)]=x,則稱x為f(x)的“穩(wěn)定點”,函數(shù)f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(I)設(shè)f(x)=3x+4,求集合A和B;
(Ⅱ)若f(x)=
1
1-ax
,∅?A⊆B,求實數(shù)a的取值范圍;
(Ⅲ)若f(x)=ax2,求證:A=B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b=2
3
,B=30°,則
a+c
sinA+sinC
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=1,b=(
1
5
)
2
3
,c=(
1
2
)
1
3
,則a,b,c的大小關(guān)系是(  )
A、a<b<c
B、b<c<a
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[0,1],值域為[1,2],則f(x+2)的定義域是
 
,值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
與向量
b
的夾角為120°,若(
a
+
b
)⊥(
a
-2
b
)
|
a
|=2
,則
b
a
上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}中,a1=1,an+1=2an+1.
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項公式.
(3)設(shè)bn=n(an+1),求數(shù)列{bn}的前n項的和sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2+ax+1=0},集合B={x|x2-3x+2=0},且A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x
2
=
y
3
=
z
4
,則
x2-y2
y2+z2
的值為
 

查看答案和解析>>

同步練習(xí)冊答案