【題目】某學(xué)校為了解學(xué)生對(duì)食堂用餐的滿意度,從全校在食堂用餐的3000名學(xué)生中,隨機(jī)抽取100名學(xué)生對(duì)食堂用餐的滿意度進(jìn)行評(píng)分.根據(jù)學(xué)生對(duì)食堂用餐滿意度的評(píng)分,得到如圖所示的率分布直方圖,

1)求頻率分布直方圖中的值

2)規(guī)定:學(xué)生對(duì)食堂用餐滿意度的評(píng)分不低于80分為滿意,試估計(jì)該校在食堂用餐的3000名學(xué)生中滿意的人數(shù).

【答案】1;(2)約為2100.

【解析】

(1)根據(jù)頻率分布直方圖的矩形面積和為1計(jì)算即可.

(2)先計(jì)算樣本中不低于80分的頻率,再根據(jù)此頻率估計(jì)該校在食堂用餐的3000名學(xué)生中滿意的人數(shù)即可.

1)由頻率分布直方圖的矩形面積和為1可知:

所以

2)樣本中不低于80分的頻率為由樣本估計(jì)總體可得3000名學(xué)生中不低于80分的頻率為約為0.7,所以滿意的人數(shù)為.故該校在校食堂用餐的3000名學(xué)生中滿意的人數(shù)約為2100.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直角梯形中,分別是的中點(diǎn),將三角形沿折起,下列說(shuō)法正確的是__________(填上所有正確的序號(hào)).

①不論折至何位置(不在平面內(nèi))都有平面;

②不論折至何位置都有;

③不論折至何位置(不在平面內(nèi))都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面,.

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)若二面角的余弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系設(shè)傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線與曲線相交于不同的兩點(diǎn)

(1)若,求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若的等比中項(xiàng),其中,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),試判斷零點(diǎn)的個(gè)數(shù);

(Ⅲ)當(dāng)時(shí),若對(duì),都有)成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)調(diào)查,某學(xué)校開設(shè)了“街舞”、“圍棋”、“武術(shù)”三個(gè)社團(tuán),三個(gè)社團(tuán)參加的人數(shù)如下表所示:

社團(tuán)

街舞

圍棋

武術(shù)

人數(shù)

320

240

200

為調(diào)查社團(tuán)開展情況,學(xué)校社團(tuán)管理部采用分層抽樣的方法從中抽取一個(gè)容量為n的樣本,已知從“圍棋”社團(tuán)抽取的同學(xué)比從“街舞”社團(tuán)抽取的同學(xué)少2人.

(1)求三個(gè)社團(tuán)分別抽取了多少同學(xué);

(2)若從“圍棋”社團(tuán)抽取的同學(xué)中選出2人擔(dān)任該社團(tuán)活動(dòng)監(jiān)督的職務(wù),已知“圍棋”社團(tuán)被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選為監(jiān)督職務(wù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖像向左平移個(gè)單位后得到函數(shù)的圖像,且函數(shù)滿足,則下列命題中正確的是()

A. 函數(shù)圖像的兩條相鄰對(duì)稱軸之間的距離為

B. 函數(shù)圖像關(guān)于點(diǎn)對(duì)稱

C. 函數(shù)圖像關(guān)于直線對(duì)稱

D. 函數(shù)在區(qū)間內(nèi)為單調(diào)遞減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:過點(diǎn),且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)若過原點(diǎn)的直線與橢圓C交于P、Q兩點(diǎn),且在直線上存在點(diǎn)M,使得為等邊三角形,求直線的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案