不等式:(3x+1)(-x2+5x-6)>0的解集為
 
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:由指數(shù)函數(shù)可得3x+1>1,進(jìn)而可化不等式為-x2+5x-6>0,解此一元二次不等式可得.
解答: 解:∵3x+1>1,∴原不等式可化為-x2+5x-6>0,
進(jìn)而可化為x2-5x+6<0,即(x-2)(x-3)<0,
解得2<x<3,即解集為{x|2<x<3}
故答案為:{x|2<x<3}.
點(diǎn)評(píng):本題考查含指數(shù)的不等式,劃歸為一元二次不等式是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽槎嗌贂r(shí),它的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′;
②若函數(shù)h(x)=cos4x-sin4x,則h′(
π
12
)=0;
③若函數(shù)g(x)=(x-1)(x-2)(x-3)…(x-2012)(x-2013),則g′(2013)=2012;
④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點(diǎn)”的充要條件;
⑤函數(shù)f(x)=
sinx
2+cosx
的單調(diào)遞增區(qū)間是(2kπ-
3
,2kπ+
3
)(k∈Z).
其中真命題為
 
.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x>0,y>0,2x+y=2xy-3,則xy的最小值為
 
,此時(shí)x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(3,-1),
b
=(λ,2),
a
b
平行,則λ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin
π
6
=
1
2
,sin
π
10
sin
10
=
1
4
,sin
π
14
sin
14
sin
14
=
1
8
,…,根據(jù)以上等式,可得
 
=
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(7,1),B(1,4),曲線ax-y=0與線段AB交于C,且
AC
+2
BC
=
0
,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P在圓C1:x2+y2-8x-4y+11=0上,點(diǎn)Q在圓C2:x2+y2+4x+2y+1=0上,則|PQ|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若四邊形ABCD滿足:
AB
+
CD
=
0
,(
AB
-
AD
)•(
AB
+
AD
)=0,則該四邊形的形狀判斷正確的是( 。
A、矩形B、菱形
C、正方形D、直角梯形

查看答案和解析>>

同步練習(xí)冊(cè)答案