【題目】已知函數(shù).

)若恒成立,求的取值范圍;

)設(shè),,(為自然對(duì)數(shù)的底數(shù)).是否存在常數(shù),使恒成立,若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

【答案】;(.

【解析】試題分析: )利用函數(shù)的導(dǎo)數(shù)求出函數(shù)的最小值,根據(jù)最小值大于 就能 求出 的取值范圍;)此恒成立問題轉(zhuǎn)化為 小于等于 的最小值,在求函數(shù)的最小值時(shí),運(yùn)用了二次求導(dǎo).

試題解析:)由已知得,的定義域?yàn)?/span>,且

當(dāng)時(shí),恒成立,

,由

的取值范圍為.

)由已知得,,其定義域?yàn)?/span>.

,上單調(diào)遞減,在上單調(diào)遞增,

,

,則,

再令,則

.

上單調(diào)遞減,

,且,

即存在,使上單調(diào)遞增,上單調(diào)遞減,

的最小值就是中較小的那個(gè),

,

恒成立,即

存在實(shí)數(shù)使恒成立,取值范圍為.

點(diǎn)睛:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,對(duì)數(shù)函數(shù)的性質(zhì)及分類討論思想,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性時(shí)要注意先求函數(shù)的定義域,若所求的導(dǎo)數(shù)含有參數(shù),在進(jìn)行討論時(shí)要做到分類標(biāo)準(zhǔn)統(tǒng)一,對(duì)參數(shù)的討論要不重不漏.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校1000名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為,視力在4.6到5.0之間的學(xué)生數(shù) 的值分別為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在十一黃金周期間降價(jià)搞促銷,某超市對(duì)顧客實(shí)行購(gòu)物優(yōu)惠活動(dòng),規(guī)定一次購(gòu)物付款總額:(1)如果不超過200元,則不予優(yōu)惠;(2)如果超過200元,但不超過500元,則按標(biāo)價(jià)給予9折優(yōu)惠;(3)如果超過500元,其中500元按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠。小張兩次去購(gòu)物,分別付款168元和423元,假設(shè)她一次性購(gòu)買上述同樣的商品,則應(yīng)付款額為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就是越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了 某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購(gòu)進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:

①若該銷售商購(gòu)進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購(gòu)進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤(rùn)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,,都是邊長(zhǎng)為2的等邊三角形,設(shè)在底面的射影為.

(1)求證:中點(diǎn);

(2)證明:

(3)求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)市政府“綠色出行”的號(hào)召,王老師每個(gè)工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計(jì)可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費(fèi)用是3元,騎共享單車單程所需的費(fèi)用是1元.記王老師在一個(gè)工作日內(nèi)上下班所花費(fèi)的總交通費(fèi)用為X元,假設(shè)王老師上下班選擇出行方式是相互獨(dú)立的.

(I)求X的分布列和數(shù)學(xué)期望;

(II)已知王老師在2017年6月的所有工作日(按22個(gè)工作日計(jì))中共花費(fèi)交通費(fèi)用110元,請(qǐng)判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說明理由.

原則:設(shè)表示王老師某月每個(gè)工作日出行的平均費(fèi)用,若,則有95%的把握認(rèn)為王老師該月的出行規(guī)律與前幾個(gè)月的出行規(guī)律相比有明顯變化.(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)ABC的頂點(diǎn)分別為,圓M是ABC的外接圓,直線的方程是,

(1)求圓M的方程;

(2)證明:直線與圓M相交;

(3)若直線被圓M截得的弦長(zhǎng)為3,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分12分為了解某校學(xué)生暑期參加體育鍛煉的情況對(duì)某班M名學(xué)生暑期參加體育鍛煉的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如下的頻率分布表與直方圖:

組別

鍛煉次數(shù)

頻數(shù)

頻率

1

2

0.04

2

11

0.22

3

16

4

15

0.30

5

6

2

0.04

[

合計(jì)

1.00

1求頻率分布表中、、及頻率分布直方圖中的值;

2求參加鍛煉次數(shù)的眾數(shù)直接寫出答案,不要求計(jì)算過程

3若參加鍛煉次數(shù)不少于18次為及格,估計(jì)這次體育鍛煉的及格率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=是奇函數(shù),且f(2)=.

(1)求實(shí)數(shù)mn的值;

(2)判斷函數(shù)f(x)在(-∞,0)上的單調(diào)性,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案