已知函數(shù)f(x)=
2
x
,x≥2
(x-1)3,x<2
若關(guān)于x的方程f(x)=k有兩個(gè)不同的實(shí)根,則數(shù)k的取值范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用,根的存在性及根的個(gè)數(shù)判斷
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意在同一個(gè)坐標(biāo)系中作出兩個(gè)函數(shù)的圖象,圖象交點(diǎn)的個(gè)數(shù)即為方程根的個(gè)數(shù),由圖象可得答案.
解答: 解:由題意作出函數(shù)f(x)=
2
x
,x≥2
(x-1)3,x<2
的圖象,
關(guān)于x的方程f(x)=k有兩個(gè)不同的實(shí)根等價(jià)于函數(shù)y=f(x)的圖象與直線y=k有兩個(gè)不同的公共點(diǎn),
由圖象可知當(dāng)k∈(0,1)時(shí),滿足題意,
故答案為:(0,1)
點(diǎn)評(píng):本題考查分段函數(shù)及運(yùn)用,考查函數(shù)與方程的轉(zhuǎn)換,以及方程根的個(gè)數(shù),數(shù)形結(jié)合是解決問題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x2+y2-4y-a=0表示一個(gè)圓.
(Ⅰ)求a的取值范圍;
(Ⅱ)若a=0,求過原點(diǎn)且傾斜角為60°的直線l被圓所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)于任意實(shí)數(shù)x,都有f(1+x)=f(1-x),且當(dāng)0≤x≤1時(shí),f(x)=3x+1
(1)求證:函數(shù)f(x)是周期函數(shù);
(2)當(dāng)x∈[1,3]時(shí),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
均為單位向量,其夾角為θ,若|
a
-
b
|<1,則θ的取值范圍是( 。
A、(0,
π
3
B、[0,
π
3
C、[0,
3
D、(
π
3
,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程sin x+2|sin x|=k在x∈[0,2π]內(nèi)有且僅有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(2,0),B(0,2),C(cosα,sinα).
(Ⅰ)若α∈[-π,0],且|
AC
|=|
BC
|,求角α;
(Ⅱ)若α∈[
π
2
,π],且
AC
BC
,求
sin2α
2
sin(α-
π
4
)-cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=asin(πx+α)+bcos(πx+β)+2,其中a、b、α、β為非零常數(shù).若f(2013)=1,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,則z=x+3y-4的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O,A,B,C四點(diǎn)共面,直線OA是線段BC的垂直平分線,
OA
=a,
OB
=b,則
OC
=( 。
A、(
a
b
a
2
a
-
b
B、2(
a
b
a
2
a
-
b
C、(
a
b
a
2
a
+
b
D、2(
a
b
a
2
a
+
b

查看答案和解析>>

同步練習(xí)冊(cè)答案