5.若sin$\frac{α}{2}$=$\frac{{\sqrt{3}}}{3}$,則cos2α的值為( 。
A.$\frac{1}{3}$B.$-\frac{2}{9}$C.$-\frac{7}{9}$D.$\frac{7}{9}$

分析 由已知利用二倍角的余弦函數(shù)公式可求cosα的值,進而利用二倍角的余弦函數(shù)公式即可計算得解.

解答 解:∵sin$\frac{α}{2}$=$\frac{{\sqrt{3}}}{3}$,
∴cosα=1-2sin2$\frac{α}{2}$=1-2×$\frac{1}{3}$=$\frac{1}{3}$,
∴cos2α=2cos2α-1=2×$\frac{1}{9}$-1=-$\frac{7}{9}$.
故選:C.

點評 本題主要考查了二倍角的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了計算能力和轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.集合A={x|3≤x≤9},集合B={x|m+1<x<2m+4},m∈R
(I)若m=1,求∁R(A∩B)
(II)若A∪B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在長方體ABCD-A1B1C1D1中,E、F分別是棱BC,CC1上的點,CF=AB=2CE,AB:AD:AA1=1:2:4,二面角A1-ED-F的正弦值$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖所示,在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中點,
(1)求異面直線A1M和C1D1所成的角的正切值;
(2)求二面角C1-B1C-D1的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)的定義域為R,且滿足f(1)=2,f′(x)<1,則不等式f(x)<x+1的解集為( 。
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.給出以下四個問題,
①輸入一個數(shù)x,輸出它的相反數(shù).
②求面積為6的正方形的周長.
③求三個數(shù)a,b,c中的最大數(shù).
④求函數(shù)f(x)=$\left\{\begin{array}{l}{x-1,x≥0}\\{x+2,x<0}\end{array}\right.$的函數(shù)值.
其中不需要用條件語句來描述其算法的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設a,b,c為非零實數(shù),則x=$\frac{a}{|a|}$+$\frac{|b|}$+$\frac{c}{|c|}$+$\frac{{|{abc}|}}{abc}$的所有值所組成的集合為(  )
A.{0,4}B.{-4,0}C.{-4,0,4}D.{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知等差數(shù)列{an}的首項為a,公差為b,等比數(shù)列{bn}的首項為b,公比為a(其中a,b均為正整數(shù)).
(1)若a1=b1,a2=b2,求數(shù)列{an},{bn}的通項公式;
(2)對于(1)中的數(shù)列{an}和{bn},對任意k∈N*在bk與bk+1之間插入ak個2,得到一個新的數(shù)列{cn},試求滿足等式$\sum_{i=1}^m{{c_i}=2{c_{m+1}}}$的所有正整數(shù)m的值;
(3)已知a1<b1<a2<b2<a3,若存在正整數(shù)m,n,t以及至少三個不同的b值使得am+t=bn成立,求t的最小值,并求t最小時a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.圓(x-3)2+(y+5)2=r2(r>0)上點到直線4x-3y-2=0的最小距離為1,則r=( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案