13.如圖,直三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=$\sqrt{2}$,則異面直線A1C與B1C1所成的角為$\frac{π}{3}$..

分析 求出三角形的三個(gè)邊長,然后求解異面直線所成角即可.

解答 解:因?yàn)閹缀误w是棱柱,BC∥B1C1,則直線A1C與BC所成的角為就是異面直線A1C與B1C1所成的角.
直三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=$\sqrt{2}$,BA1=$\sqrt{2}$,CA1=$\sqrt{2}$,
三角形BCA1是正三角形,異面直線所成角為$\frac{π}{3}$.
故答案為$\frac{π}{3}$.

點(diǎn)評 本題考查異面直線所成角的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知tanα=2,tanβ=3,則tan(α+β)=( 。
A.1B.-1C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求圓心在l1:y-3x=0上,與x軸相切,且被直線l2:x-y=0截得弦長為$2\sqrt{7}$的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,已知$A={60°},b=4,{S_{△ABC}}=4\sqrt{3}$,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線y=x的傾斜角是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知點(diǎn)P在曲線C上,P到F(1,0)的距離比它到直線l:x+2=0的距離小1,直線y=x-2與曲線C交于A,B兩點(diǎn).
(1)求弦AB的長度;
(2)若點(diǎn)P在第一象限,且△ABP面積為$2\sqrt{3}$,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=lnx+\frac{1}{2x}$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=f(x)-m.若函數(shù)g(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),證明:x1+x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.化簡$\frac{cos(π+α)•sin(α+2π)}{sin(-α-π)•cos(-π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)曲線l極坐標(biāo)方程為ρcosθ-ρsinθ+1=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.(θ為參數(shù))$,A,B為曲線l與曲線C的兩個(gè)交點(diǎn),則|AB|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案