A.在點x0處的斜率
B.在點(x0,f(x0))處的切線與x軸所夾銳角的正切值
C.曲線y=f(x)在點(x0,f(x0))處切線的斜率
D.點(x0,f(x0))與點(0,0)連線的斜率
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
y/ |
y |
f/(x) |
f(x) |
f/(x) |
f(x) |
1 |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)y=f(x)是定義域為R 的奇函數(shù),且滿足f(x-2)=-f(x)對一切x∈R恒成立,當(dāng)
-1≤x≤1時,f(x)=x3。則下列四個命題:①f(x)是以4為周期的周期函數(shù);②f(x)在[1,3]上的解析式為f(x)=(2-x)3;③f(x)在處的切線方程為3x+4y-5=0;④f(x)的圖像的對稱軸中有x=±1.其中正確的命題是 ( )
A.① ② ③ B.② ③ ④ C.① ③ ④ D.① ② ③ ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=f(x)在x=處取得最小值- (t>0),f(1)=0.
(1)求y=f(x)的表達(dá)式;
(2)若任意實數(shù)x都滿足等式f(x)·g(x)+anx+bn=xn+1[g(x)]為多項式,n∈N*),試用t表示an和bn;
(3)設(shè)圓Cn的方程為(x-an)2+(y-bn)2=rn2,圓Cn與Cn+1外切(n=1,2,3,…);{rn}是各項都是正數(shù)的等比數(shù)列,記Sn為前n個圓的面積之和,求rn、Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.f(x)在R上是減函數(shù) B.f(x)在R上是增函數(shù)
C.f(x)在R上是奇函數(shù) D.f(x)在R上是偶函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com