(
x
-
1
2x
)10
的二項(xiàng)展開(kāi)式中,x2的系數(shù)為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:二項(xiàng)式定理
分析:先求出二項(xiàng)式展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于2,求得r的值,即可求得展開(kāi)式中x2的系數(shù)的值.
解答: 解:(
x
-
1
2x
)10
的二項(xiàng)展開(kāi)式的通項(xiàng)公式為T(mén)r+1=
C
r
10
(-
1
2
)
r
x
10-3r
2
,令
10-3r
2
=2,求得r=2,
故展開(kāi)式中x2的系數(shù)為
C
2
10
×
1
4
=
45
4

故答案為:
45
4
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有4位教師,每位教師帶了2位自己的學(xué)生參加數(shù)學(xué)競(jìng)賽.8名學(xué)生完成考試后由這4位教師進(jìn)行交叉閱卷,每位教師閱卷2份,每位教師均不能閱自己的學(xué)生試題,且不能閱來(lái)自同一位教師的2位同學(xué)的試題.問(wèn)閱卷方式有多少種不同的選擇?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
x2
p
+qx+p>0的解集是{x|2<x<4},求實(shí)數(shù)p+q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)A(-a,0),B(a,b)的直線與橢圓
x2
a2
+
y2
b2
=1交于點(diǎn)C,則|AC|:|BC|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有6個(gè)工廠組建一個(gè)公司,共需要10名技術(shù)人員,現(xiàn)分配給每個(gè)工廠至少一個(gè)名額,至多3個(gè)名額,那么這10個(gè)名額在這6個(gè)工廠的分配情況共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三行三列的方陣中有9個(gè)數(shù)aij(i=1,2,3;j=1,2,3),從中任取三個(gè)數(shù),則這三個(gè)數(shù)位于不同行不同列的概率是
 
. (結(jié)果用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(x+
1
x2
5的展開(kāi)式中,含x2項(xiàng)的系數(shù)等于
 
.(結(jié)果用數(shù)值作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)a,b,c滿足a2+b2+c2=8,則a+b+c的最大值為( 。
A、9
B、2
3
C、3
2
D、2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=tan2x+tanx-1(|x|≤
π
4
)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案