如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米建立適當?shù)闹苯亲鴺讼,求拋物線方程.
現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?

(1) (2)梯形ABCD的下底AB=米時,所挖的土最少.

解析試題分析:(1)如圖 以O(shè)為原點,AB所在的直線
為X軸,建立平面直角坐標系,  1分

則F(2,3),  2分
設(shè)拋物線的方程是  3分
因為點F在拋物線上,所以

所以拋物線的方程是         5分
(2) 依題等腰梯形ABCD中,AB∥CD,線段AB的中點O是拋物線的頂點,AD,AB,BC分別與拋物線切于點M,O,N        6分
,設(shè),,則拋物線在N處的切線方程是
,且        8分
所以,        10分
梯形ABCD的面積是
           12分
答:梯形ABCD的下底AB=米時,所挖的土最少.
考點:本題考查了拋物線的實際運用
點評:借助坐標系,將實際應(yīng)用問題、幾何問題轉(zhuǎn)化代數(shù)計算問題,這是解析幾何的任務(wù)之一.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率P與日產(chǎn)量x(萬件)之間大體滿足關(guān)系:(其中c為小于6的正常數(shù)).  (注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品),已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每生產(chǎn)出1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.
(1)試將生產(chǎn)這種儀器的元件每天的盈利額T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知,求函數(shù)的最大值和最小值;
(2)要使函數(shù)上f (x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)一種儀器,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)以往的經(jīng)驗知道,其次品率P與日產(chǎn)量(件)之間近似滿足關(guān)系:
(其中為小于96的正整常數(shù))
(注:次品率P=,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品.)已知每生產(chǎn)一件合格的儀器可以盈利A元,但每生產(chǎn)一件次品將虧損A/2元,故廠方希望定出合適的日產(chǎn)量。
試將生產(chǎn)這種儀器每天的贏利T(元)表示為日產(chǎn)量(件的函數(shù));
當日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

欲修建一橫斷面為等腰梯形(如圖1)的水渠,為降低成本必須盡量減少水與渠壁的接觸面,若水渠橫斷面面積設(shè)計為定值S,渠深h,則水渠壁的傾角α(0°<α<90°)應(yīng)為多大時,方能使修建成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算
(1)    (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差數(shù)列.
(1)求實數(shù)m的值;
(2)若a、b、c是兩兩不相等的正數(shù),且a、b、c成等比數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當時,有(其中為自然對數(shù)的底,).
(1)求函數(shù)的解析式;
(2)設(shè),,求證:當時,;
(3)試問:是否存在實數(shù),使得當時,的最小值是3?如果存在,求出實數(shù)的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù),
(1)若時,在其定義域內(nèi)單調(diào)遞增,求的取值范圍;
(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點,過線段的中點軸的垂線分別交于點,,問是否存在點,使處的切線與處的切線平行?若存在,求的橫坐標,若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案