如圖1,在平面內(nèi),ABCD是AB=2,BC=
2
的矩形,△PAB是正三角形,將△PAB沿AB折起,使PC⊥BD,如圖2,E為AB的中點,設直線l過點C且垂直于矩形ABCD所在平面,點F是直線l上的一個動點,且與點P位于平面ABCD的同側(cè).
(1)求證:PE⊥平面ABCD;
(2)設直線PF與平面PAB所成的角為θ,若45°<θ≤60°,求線段CF長的取值范圍.
精英家教網(wǎng)
分析:(1)由題意得:BD⊥PE,PE⊥AB所以PE⊥平面ABCD.所以證明線面垂直一般是證明已知直線與平面內(nèi)的兩條相交直線垂直即可.
(2)建立空間直角坐標系利用向量法求出直線所在的向量與平面的法向量,結(jié)合向量的知識表示出向量的夾角,進而表示出線面角,再求出線段CF長的取值范圍.
解答:解:精英家教網(wǎng)(1)連接EC,∵
BE
BC
=
1
2
=
2
2
=
BC
CD
,∠EBC=∠BCD=90°,
∴△EBC∽△BCD,
∴∠ECB=∠BDC.
∴BD⊥CE.
又∵PC⊥BD,PC∩CE=C,
∴BD⊥平面PEC.
∴BD⊥PE.
在正△PAB中,
∵E是AB的中點,
∴PE⊥AB.
又∵AB∩BD=B,
∴PE⊥平面ABCD.
(2)∵PE⊥平面ABCD,CF⊥平面ABCD,
∴PE∥CF.
∴CF∥平面PAB.
又∵CB⊥平面PAB.
∴點F到平面PAB的距離=點C到平面PAB的距離=
2

設CF=t.過F作FG⊥PE于G,則PF=
(
3
-t)
2
+3
sinθ=
2
(
3
-t)
2
+3

∵45°<θ≤60°,
2
2
<sinθ≤
3
2

2
2
2
(
3
-t)
2
+3
3
2

解得
3
-1≤t<
3
+1

所以線段CF長的取值范圍為[
3
-1,
3
+1)
點評:解決探索性問題與求長度問題最好的方法就是向量法,將其轉(zhuǎn)化為向量的基本運算,通過方程或不等式解決問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個正方形分別沿AD,CD折起,使D′′與D′重合于點D1.設直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設二面角E-AC-D1的大小為θ,若
π
4
≤θ≤
π
3
,求線段BE長的取值范圍;
(Ⅱ)在線段D1E上存在點P,使平面PA1C1∥平面EAC,求
D1P
PE
與BE之間滿足的關系式,并證明:當0<BE<a時,恒有
D1P
PE
<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在平面內(nèi),ABCD是∠BAD=60°且AB=a的菱形,ADD''A1和CDD'C1都是正方形.將兩個正方形分別沿AD,CD折起,使D''與D'重合于點D1.設直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè),設BE=t(t>0)(圖2).
(1)設二面角E-AC-D1的大小為q,若
π
4
≤θ≤
π
3
,求t的取值范圍;
(2)在線段D1E上是否存在點P,使平面PA1C1∥平面EAC,若存在,求出P分
D1E
所成的比λ;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市高三第二次教學質(zhì)量考試數(shù)學理卷 題型:解答題

(本題滿分14分)

如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D1 .設直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).

  

(Ⅰ) 設二面角E – AC – D1的大小為q,若£ q £ ,求線段BE長的取值范圍;

(Ⅱ)在線段上存在點,使平面平面,求與BE之間滿足的關系式,并證明:當0 < BE < a時,恒有< 1.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知在銳角ΔABC中,角所對的邊分別為,且

(I )求角大;

(II)當時,求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點,設直線過點且垂直于矩形所在平面,點是直線上的一個動點,且與點位于平面的同側(cè)。

(1)求證:平面;

(2)設二面角的平面角為,若,求線段長的取值范圍。

 


21.已知A,B是橢圓的左,右頂點,,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線于點P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點,R和Q的橫坐標之和為2,RQ的中垂線交X軸于T點

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;

(2)如果當時,都有恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年浙江省杭州市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個正方形分別沿AD,CD折起,使D′′與D′重合于點D1.設直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設二面角E-AC-D1的大小為θ,若≤θ≤,求線段BE長的取值范圍;
(Ⅱ)在線段D1E上存在點P,使平面PA1C1∥平面EAC,求與BE之間滿足的關系式,并證明:當0<BE<a時,恒有<1.

查看答案和解析>>

同步練習冊答案