【題目】某公司招聘員工,先由兩位專(zhuān)家面試,若兩位專(zhuān)家都同意通過(guò),則視作通過(guò)初審予以錄用;若兩位專(zhuān)家都未同意通過(guò),則視作未通過(guò)初審不予錄用;當(dāng)這兩位專(zhuān)家意見(jiàn)不一致時(shí),再由第三位專(zhuān)家進(jìn)行復(fù)審,若能通過(guò)復(fù)審則予以錄用,否則不予錄用.設(shè)應(yīng)聘人員獲得每位初審專(zhuān)家通過(guò)的概率為0.5,復(fù)審能通過(guò)的概率為0.3,各專(zhuān)家評(píng)審的結(jié)果相互獨(dú)立.
(Ⅰ)求某應(yīng)聘人員被錄用的概率;
(Ⅱ)若4人應(yīng)聘,設(shè)X為被錄用的人數(shù),試求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
【答案】(1);(2)分布列詳見(jiàn)解析,.
【解析】
試題本題主要考查獨(dú)立事件的概率、離散型隨機(jī)變量的分布列和數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、計(jì)算能力.第一問(wèn),通過(guò)分析知所求的應(yīng)聘人員被錄用的情況包括兩位專(zhuān)家都同意通過(guò)的情況和只有一位專(zhuān)家同意通過(guò)并通過(guò)復(fù)審的情況,所以分別求概率,利用獨(dú)立事件的概率求解;第二問(wèn),先求出每個(gè)人被錄用的概率,再利用二項(xiàng)分布求出每種情況的概率,列出分布列,利用二項(xiàng)分布的期望公式計(jì)算數(shù)學(xué)期望.
試題解析:設(shè)“兩位專(zhuān)家都同意通過(guò)”為事件,“只有一位專(zhuān)家同意通過(guò)”為事件,“通過(guò)復(fù)審”為事件.
(Ⅰ)設(shè)“某應(yīng)聘人員被錄用”為事件,則
∵,,
∴
(Ⅱ)根據(jù)題意,
表示“應(yīng)聘的人中恰有人被錄用”.
∵,,
,,
∴的分布列為
∵~,∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
①sin213°+cos217°﹣sin13°cos17°;
②sin215°+cos215°﹣sin15°cos15°;
③sin218°+cos212°﹣sin18°cos12°;
④sin2(﹣18°)+cos248°﹣sin(﹣18°)cos48°
⑤sin2(﹣25°)+cos255°﹣sin(﹣25°)cos55°
(Ⅰ)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
(Ⅱ)根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為一三角恒等式sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)= ,并證明你的結(jié)論.
(參考公式:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβsinαsinβsin2α=2sinαcosα,cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求方程的解集;
(2)若關(guān)于x的方程在上恒有解,求m的取值范圍;
(3)若不等式在上恒成立,求m的取值范圍;
(4)若關(guān)于x的方程在上有解,那么當(dāng)m取某一確定值時(shí),方程所有解的和記為,求所有可能值及相應(yīng)的m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,H是直角頂點(diǎn))來(lái)處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計(jì)要求管道的接口H是的中點(diǎn),點(diǎn)E,F分別落在線段上.已知,記.
(1)試將污水管道的長(zhǎng)度表示為的函數(shù),并寫(xiě)出定義域;
(2)已知,求此時(shí)管道的長(zhǎng)度l;
(3)當(dāng)取何值時(shí),鋪設(shè)管道的成本最低?并求出此時(shí)管道的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)為宣傳本市,隨機(jī)對(duì)本市內(nèi)歲的人群抽取了人,回答問(wèn)題“本市內(nèi)著名旅游景點(diǎn)有哪些” ,統(tǒng)計(jì)結(jié)果如圖表所示.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | a | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | b | 0.9 |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 | y |
(1)分別求出的值;
(2)根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的中位數(shù)(保留小數(shù)點(diǎn)后兩位)和平均數(shù);
(3)若第1組回答正確的人員中,有2名女性,其余為男性,現(xiàn)從中隨機(jī)抽取2人,求至少抽中1名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左右焦點(diǎn)分別為,,離心率,短軸長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)的直線與橢圓交于不同的兩點(diǎn),,則的面積是否存在最大值?若存在,求出這個(gè)最大值及直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,.直角梯形通過(guò)直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)延長(zhǎng)至點(diǎn),使為平面內(nèi)的動(dòng)點(diǎn),若直線與平面所成的角為,且,求點(diǎn)到點(diǎn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若數(shù)列和滿足則稱數(shù)列是數(shù)列的“伴隨數(shù)列”.
已知數(shù)列是數(shù)列的伴隨數(shù)列,試解答下列問(wèn)題:
(1)若,,求數(shù)列的通項(xiàng)公式;
(2)若,為常數(shù),求證:數(shù)列是等差數(shù)列;
(3)若,數(shù)列是等比數(shù)列,求的數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,若橢圓上一點(diǎn)滿足,過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作軸的垂線,交橢圓于,求證:存在實(shí)數(shù),使得.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com