分析 設內接圓柱的底面半徑為r,高為h,根據三角形相似找出h與r的關系,然后表示出內接圓柱側面積,最后利用基本不等式求出最值即可,注意等號成立的條件.
解答 解:設內接圓柱的底面半徑為r,高為h,如右圖,
∵△CAB∽△CED,
∴ED:AB=CD:CB,即h:4=(2-r):2,則h=4-2r,
∴內接圓柱側面積S=2πrh=2πr×(4-2r)=4πr(2-r)
≤4π($\frac{r+2-r}{2}$)2=4π,
當且僅當r=2-r,即r=1時取等號,
∴內接圓柱側面積最大值是4π.
故答案為:4π.
點評 本題主要考查了圓錐的內接圓柱的側面積,以及基本不等式在最值中的應用,同時考查了分析問題的能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | ①②③④ | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{3}$或$\frac{\sqrt{3}}{9}$ | C. | $\frac{\sqrt{3}}{9}$ | D. | $\sqrt{3}$或$\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com