16.已知冪函數(shù)y=f(x)的圖象經(jīng)過點$(\sqrt{2},2\sqrt{2}),則f(5)$=125.

分析 用待定系數(shù)法,設冪函數(shù)f(x)=xα,把點的坐標代入即可解出解析式,再計算f(5).

解答 解:設冪函數(shù)f(x)=xα,把點($\sqrt{2}$,2$\sqrt{2}$)代入可得
2$\sqrt{2}$=($\sqrt{2}$)α,解得α=3.
∴f(x)=x3
∴f(5)=53=125.
故答案為:125.

點評 本題考查了冪函數(shù)的定義與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.設$f(x)=\left\{{\begin{array}{l}{1-{x^2},x≤1}\\{lnx,x>1}\end{array}}\right.$,若方程f(x)=kx-$\frac{1}{2}$恰有四個不相等的實數(shù)根,則實數(shù)k的取值范圍是( 。
A.$(\frac{1}{2},\frac{1}{{\sqrt{e}}}$)B.(2,e)C.($\sqrt{e}$,2)D.$(\frac{1}{2},\sqrt{e}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知角α的終邊經(jīng)過點P(4,-3),
(1)求sinα,cosα,tanα的值;
(2)求$\frac{sin(\frac{π}{2}-α)}{sin(π+α)}$•$\frac{tan(π-α)}{cos(α+π)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.拋2顆骰子,則向上點數(shù)不同的概率為(  )
A.$\frac{5}{6}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知f(x)=$2{cos^2}x+2\sqrt{3}sinxcosx-1$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A、B、C的對邊分別為a,b,c,f(A)=2,a=$\sqrt{3}$,B=$\frac{π}{4}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如果橢圓的兩焦點為F1(0,-1)和F2(0,1),P是橢圓上的一點,且|PF1|,|F1F2|,|PF2|成等差數(shù)列,那么橢圓的方程是( 。
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{12}=1$C.$\frac{x^2}{4}+\frac{y^2}{3}=1$D.$\frac{x^2}{3}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在平面直角坐標系中,圓C:(x-3)2+(y-1)2=9上,圓C與直線x-y+a=0交于A,B兩點,且以AB為直徑的圓過坐標原點,則a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設f(x)=a•ex+blnx+c,且$f'(1)=e,f'(-1)=\frac{1}{e}$.
(1)求實數(shù)a,b的值.
(2)將(1)得到的a,b值代入f(x),得到函數(shù)g(x),若點A(0,d)在g(x)圖象上,且g(x)在A點處的切線過點B(1,4),求c,d的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}{e^x},x<0\\-{x^2}+4x+3,x≥0\end{array}\right.$,若方程f(x)-k=0有兩個零點,則實數(shù)k的取值范圍是( 。
A.[3,7)∪{-4e-2,0}B.[3,7)∪{-4e-2}C.[4e-2,7)D.[0,7]∪{-4e-2}

查看答案和解析>>

同步練習冊答案