在△ABC中,sinA=
3
4
,a=10,則邊長(zhǎng)c的取值范圍是(  )
分析:利用正弦定理列出關(guān)系式,根據(jù)sinC的值域即可確定出c的范圍.
解答:解:∵在△ABC中,sinA=
3
4
,a=10,
∴由正弦定理
a
sinA
=
c
sinC
得:c=
asinC
sinA
=
10sinC
3
4
=
40
3
sinC,
∵0<sinC≤1,
∴c的范圍是(0,
40
3
].
故選C
點(diǎn)評(píng):此題考查了正弦定理,以及正弦函數(shù)的定義域與值域,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、在△ABC中,sin(A+B)=sin(A-B),則△ABC一定是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan
A+B
2
tan
C
2
;④cos
B+C
2
sin
A
2
,其中恒為定值的是( 。
A、②③B、①②C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,sin(A-B)+sinC=
3
2
,BC=
3
AC
,則∠B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•廣東模擬)在△ABC中,sin(C-A)=1,sinB=
1
3

(Ⅰ)求sinA的值;
(Ⅱ)設(shè)AC=
6
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,“sin(A-B)cosB+cos(A-B)sinB≥1”是“△ABC是直角三角形”的( 。
A、充分不必要條件B、必要不充分條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案