【題目】如圖,棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,E為邊AA1的中點(diǎn),P為側(cè)面BCC1B1上的動(dòng)點(diǎn),且A1P∥平面CED1 . 則點(diǎn)P在側(cè)面BCC1B1軌跡的長(zhǎng)度為(

A.2
B.
C.
D.

【答案】C
【解析】解:取C1D1 , C1C的中點(diǎn)G,F(xiàn),

連接A1G、FG,BF,A1B,
∵GF∥D1C,GF平面CED1 , GF∥平面CED1 ,
BF∥D1E,BF平面CED1 , BF∥平面CED1 ,
∵BF,GF是平面A1GFB內(nèi)的相交直線,
∴平面A1GFB∥平面CED1 ,
故A1P∥平面CED1時(shí),
P在側(cè)面BCC1B1的軌跡是線段BF,
∵正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為2,
故BF=
故選:C
【考點(diǎn)精析】關(guān)于本題考查的空間中直線與平面之間的位置關(guān)系,需要了解直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系 中,以原點(diǎn) 為極點(diǎn),以 軸正半軸為極軸,建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為 ,曲線 的參數(shù)方程為
(1)求曲線 的直角坐標(biāo)方程與曲線 的普通方程;
(2)試判斷曲線 是否存在兩個(gè)交點(diǎn)?若存在,求出兩交點(diǎn)間的距離;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓過橢圓的上頂點(diǎn)作圓的兩條切線分別與橢圓相交于兩點(diǎn)(不同于點(diǎn)),直線的斜率分別為.

(1)求橢圓的方程;

(2)當(dāng)變化時(shí),①求的值;②試問直線是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察研究某種植物的生長(zhǎng)速度與溫度的關(guān)系,經(jīng)過統(tǒng)計(jì),得到生長(zhǎng)速度(單位:毫米/月)與月平均氣溫的對(duì)比表如下:

溫度

-5

0

6

8

12

15

20

生長(zhǎng)速度

2

4

5

6

7

8

10

(1)求生長(zhǎng)速度關(guān)于溫度的線性回歸方程;(斜率和截距均保留為三位有效數(shù)字);

(2)利用(1)中的線性回歸方程,分析氣溫從時(shí)生長(zhǎng)速度的變化情況,如果某月的平均氣溫是時(shí),預(yù)測(cè)這月大約能生長(zhǎng)多少.

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù), .(的圖象連續(xù)不斷)

(1) 的單調(diào)區(qū)間;

(2) 當(dāng)時(shí),證明:存在,使

(3) 若存在屬于區(qū)間,且,使,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長(zhǎng)為1的等邊三角形ABC中,D,E分別是AB,AC上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC=

(1)求證:平面DEG∥平面BCF;
(2)若D,E為AB,AC上的中點(diǎn),H為BC中點(diǎn),求異面直線AB與FH所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量, ,函數(shù),函數(shù)軸上的截距我,與軸最近的最高點(diǎn)的坐標(biāo)是

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)將函數(shù)的圖象向左平移)個(gè)單位,再將圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來的2倍,得到函數(shù)的圖象,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)MN,過點(diǎn)Mx軸的垂線分別與直線OPON交于點(diǎn)A,B,其中O為原點(diǎn).

(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(Ⅱ)求證:A為線段BM的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=A,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案