【題目】1將根式化為分式指數(shù)冪的形式

2的值.

【答案】(1);(2).

【解析】試題分析:1先將每個(gè)因式的公式化為分式指冪的形式,然后根據(jù)指數(shù)冪的運(yùn)算法則求解即可;2根據(jù)對(duì)數(shù)的運(yùn)算法則分別求出的值,作差即可.

試題解析:1.

2可得,可得,可得, .

【方法點(diǎn)晴】本題主要考查對(duì)數(shù)函的運(yùn)算、指數(shù)冪的運(yùn)算,屬于中檔題. 指數(shù)冪運(yùn)算的四個(gè)原則:(1)有括號(hào)的先算括號(hào)里的,無(wú)括號(hào)的先做指數(shù)運(yùn)算;(2)先乘除后加減,負(fù)指數(shù)冪化成正指數(shù)冪的倒數(shù);(3)底數(shù)是負(fù)數(shù),先確定符號(hào),底數(shù)是小數(shù),先化成分?jǐn)?shù),底數(shù)是帶分?jǐn)?shù)的,先化成假分?jǐn)?shù);(4)若是根式,應(yīng)化為分?jǐn)?shù)指數(shù)冪,盡可能用冪的形式表示,運(yùn)用指數(shù)冪的運(yùn)算性質(zhì)來(lái)解答(化簡(jiǎn)過(guò)程中一定要注意等價(jià)性,特別注意開偶次方根時(shí)函數(shù)的定義域)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)出售兩款型號(hào)不同的手機(jī),由于市場(chǎng)需求發(fā)生變化,第一款手機(jī)連續(xù)兩次提價(jià)10%,第二款手機(jī)連續(xù)兩次降價(jià)10%,結(jié)果都以1210元出售.

(1)求第一款手機(jī)的原價(jià);

(2)若該商場(chǎng)同時(shí)出售兩款手機(jī)各一部,求總售價(jià)與總原價(jià)之間的差額.(結(jié)果精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第35屆牡丹花會(huì)期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場(chǎng)所是王城公園和牡丹公園.
(1)若學(xué)生甲和乙必須在同一個(gè)公園,且甲和丙不能在同一個(gè)公園,則共有多少種不同的分配方案?
(2)每名學(xué)生都被隨機(jī)分配到其中的一個(gè)公園,設(shè)X,Y分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象向右平移兩個(gè)單位,得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)若方程上有且僅有一個(gè)實(shí)根,求的取值范圍;

(3)若函數(shù)的圖象關(guān)于直線對(duì)稱,設(shè),已知對(duì)任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

() 1是關(guān)于x的方程的一個(gè)解,求t的值;

() 當(dāng)時(shí),解不等式;

()若函數(shù)在區(qū)間(-1,2]上有零點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(1) ;

(2) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足

(1)求證:A,B,C三點(diǎn)共線;

(2)若A(1,cosx),B1+sinx,cosx),且x∈[0, ],函數(shù)f(x)=2m+||+m2的最小值為5,求實(shí)數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于命題P:存在一個(gè)常數(shù)M,使得不等式 對(duì)任意正數(shù)a,b恒成立.
(1)試給出這個(gè)常數(shù)M的值;
(2)在(1)所得結(jié)論的條件下證明命題P;
(3)對(duì)于上述命題,某同學(xué)正確地猜想了命題Q:“存在一個(gè)常數(shù)M,使得不等式 對(duì)任意正數(shù)a,b,c恒成立.”觀察命題P與命題Q的規(guī)律,請(qǐng)猜想與正數(shù)a,b,c,d相關(guān)的命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所2017年10月16日正式發(fā)布一種水稻新種質(zhì),株高可達(dá)2.2米以上,具有高產(chǎn)、抗倒伏、抗病蟲害、酎淹澇等特點(diǎn),被認(rèn)為開啟了水稻研制的一扇新門.以下是兩組實(shí)驗(yàn)田中分別抽取的6株巨型稻的株高,數(shù)據(jù)如下(單位:米).

: 1.7 1.8 1.9 2.2 2.4 2.5

: 1.8 1.9 2.0 2.0 2.4 2.5

(1)繪制兩組數(shù)據(jù)的莖葉圖,并求出組數(shù)據(jù)的中位數(shù)和組數(shù)據(jù)的方差;

(2)從組樣本中隨機(jī)抽取2株,請(qǐng)列出所有的基本事件,并求至少有一株超過(guò)組株高平均值的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案