【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險的基準保費為a元,在下一年續(xù)保時,實行費率浮動機制,保費與車輛發(fā)生道路交通事故出險的情況相聯(lián)系,最終保費基準保費與道路交通事故相聯(lián)系的浮動比率),具體情況如下表:

交強險浮動因素和浮動費率比率表

類別

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

下浮

上兩個年度未發(fā)生有責任道路交通事故

下浮

上三個及以上年度未發(fā)生有責任道路交通事故

下浮

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

上一個年度發(fā)生兩次及兩次以上有責任不涉及死亡的道路交通事故

上浮

上一個年度發(fā)生有責任道路交通死亡事故

上浮

為了解某一品牌普通6座以下私家車的投保情況,隨機抽取了100輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計如下表:

類型

數(shù)量

20

10

10

38

20

2

若以這100輛該品牌的投保類型的頻率代替一輛車投保類型的概率,則隨機抽取一輛該品牌車在第四年續(xù)保時的費用的期望為(

A.aB.C.D.

【答案】D

【解析】

一輛品牌車在第四年續(xù)保時的費用的可取值有,然后根據(jù)表格算出對應的概率即可

由題意可知,一輛品牌車在第四年續(xù)保時的費用的可取值有

,且對應的概率分別為:

所以

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點是以為直徑的圓上異于、的一點,直角梯形所在平面與圓所在平面垂直,且.

1)證明:平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的離心率為,且橢圓短軸的一個頂點到左焦點的距離等于

1)求橢圓的方程;

2)設經(jīng)過點的直線交橢圓兩點,弦的中垂線軸于點

①求實數(shù)的取值范圍;

②若,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體QPABCD為一簡單組合體,在底面ABCD中,∠DAB=60°,ADDC,ABBC,QD⊥平面ABCDPAQD,PA=1,ADABQD=2.

(1)求證:平面PAB⊥平面QBC

(2)求該組合體QPABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)當時,函數(shù)在區(qū)間的最小值為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為(

A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線組成(“”表示一根陽線,“”表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有三根陽線和三根陰線的概率__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,的中點.

(I)若上的一點,且與直線垂直,求的值;

(Ⅱ)在(I)的條件下,設異面直線所成的角為45°,求直線與平面成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓的左、右焦點,離心率為,點在橢圓上.

1)求橢圓的方程;

2)過的直線分別交橢圓于,且,問是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案