【題目】已知函數(shù)

(1)求的最小正周期;

(2)設(shè)為銳角三角形,角A的對邊長B的對邊長的面積.

【答案】1π2

【解析】

1)利用三角恒等變換化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的周期性,得出結(jié)論.

2)根據(jù)fA)=0,求得A的值,再利用正弦定理求得B,可得C的值,利用△ABC的面積為 absinC,計算求得結(jié)果.

解:(1)函數(shù)fx)=sinxcosxsin2xsin2xsin2x+)﹣,

故它的最小正周期為π

2)∵△ABC為銳角三角形,角A的對邊長,角B的對邊長,

fA)=sin2A+)﹣0

sin2A+)=,∴2A+,∴A

再由正弦定理可得,∴sinB

B,∴CπAB

sinCsin+)=sincos+cossin,

故△ABC的面積為 absinC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們把定義在上,且滿足(其中常數(shù),滿足,)的函數(shù)叫做似周期函數(shù).

1)若某個似周期函數(shù)滿足且圖像關(guān)于直線對稱,求證:函數(shù)是偶函數(shù);

2)當(dāng)時,某個似周期函數(shù)在時的解析式為,求函數(shù)的解析式;

3)對于確定的且當(dāng)時,,試研究似周期函數(shù)在區(qū)間上是否可能是單調(diào)函數(shù)?若可能,求出的取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機詢問100名性別不同的大學(xué)生是否愛好某項運動,得到如下列聯(lián)表:

1)能否有的把握認(rèn)為是否愛好該項運動與性別有關(guān)?請說明理由.

2)利用分層抽樣的方法從以上愛好該項運動的大學(xué)生中抽取6人組建運動達(dá)人社,現(xiàn)從運動達(dá)人社中選派2人參加某項校際挑戰(zhàn)賽,求選出的2人中恰有1名女大學(xué)生的概率.

總計

愛好

40

20

60

不愛好

15

25

40

總計

55

45

100

附:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面是矩形,平面,以為直徑的球面交于點,交于點.則點到平面的距離為_

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖的折線圖是某超市2018年一月份至五月份的營業(yè)額與成本數(shù)據(jù),根據(jù)該折線圖,下列說法正確的是( )

A.該超市2018年的前五個月中三月份的利潤最高

B.該超市2018年的前五個月的利潤一直呈增長趨勢

C.該超市2018年的前五個月的利潤的中位數(shù)為0.8萬元

D.該超市2018年前五個月的總利潤為3.5萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,準(zhǔn)線為上一點,直線與拋物線交于,兩點,若,則=

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,,點在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在斜率為的直線與橢圓相交于,兩點,使得?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)恰有三個零點,則實數(shù)的取值范圍是____________

查看答案和解析>>

同步練習(xí)冊答案