設(shè)f(x)=
1
3
x3+ax2+5x+6在區(qū)間[1,3]上為單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍為(  )
A、(-∞,-
5
]
B、(-∞,-3]
C、(-∞,-3]∪[-
5
,+∞)
D、(-
5
,
5
]
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求導(dǎo)函數(shù),f(x)在[1,3]上為單調(diào)函數(shù),則f′(x)≤0在[1,3]上恒成立,利用分離參數(shù)法,借助于導(dǎo)數(shù),確定函數(shù)的最值,即可求實(shí)數(shù)a的取值范圍.
解答: 解:求導(dǎo)數(shù)可得:f′(x)=x2+2ax+5
∵f(x)在[1,3]上為單調(diào)遞減函數(shù),
∴f′(x)≤0,
即x2+2ax+5≤0在[1,3]恒成立,
∴a≤-
x2+5
2x
在[1,3]恒成立,
設(shè)g(x)=-
x2+5
2x
,則g′(x)=
5-x2
2x2
,
令g′(x)=0得:x=
5
或x=-
5
(舍去)
∴當(dāng)1≤x≤
5
時(shí),g′(x)≥0,當(dāng)
5
≤x≤3時(shí),g′(x)≤0
∴g(x)在(1,
5
)上遞增,在(
5
,3)上遞減,
∵g(1)=-3 g(3)=-
7
3
,
∴最小值為g(1)=-3
∴當(dāng)f′(x)≤0時(shí),a≤g(x)≤g(1)=-3
∴a≤-3,
故選:B.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,分離參數(shù),求函數(shù)的最值是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+a
x
,a≠0.
(1)若a=1,用定義證明f(x)在[1,+∞)上單調(diào)遞增;
(2)判斷并證明f(x)在其定義域上的單調(diào)性,并求f(x)在區(qū)間[1,4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=sin(-2x+
π
4
),給出以下四個(gè)論斷
①函數(shù)圖象關(guān)于直線x=-
8
對(duì)稱;
②函數(shù)圖象一個(gè)對(duì)稱中心是(
8
,0);
③函數(shù)f(x)在區(qū)間[-
π
8
,
8
]上是減函數(shù);
④當(dāng)且僅當(dāng)kπ+
8
<x<kπ+
8
(k∈Z)時(shí),f(x)<0.
以上四個(gè)論斷正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P是橢圓
x2
16
+
y2
9
=1上的動(dòng)點(diǎn),作PD⊥y軸,D為垂足,則PD中點(diǎn)的軌跡方程為( 。
A、
x2
9
+
y2
16
=1
B、
x2
64
+
y2
9
=1
C、
x2
9
+
y2
4
=1
D、
x2
4
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
2-x,x<1
log4x,x>1
,求使得f(x)<
1
4
的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若0<a<1,則方程a|x|=|logax|的實(shí)根個(gè)數(shù)(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2x-2sin2x.
(1)求函數(shù)f(x)的最大值;
(2)求函數(shù)f(x)的零點(diǎn)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,且(2a-c)cosB-bcosC=0.
(1)求∠B;
(2)設(shè)函數(shù)f(x)=-2cos(2x+B),將f(x)的圖象向左平移
π
12
后得到函數(shù)g(x)的圖象,求函數(shù)g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+1在(-1,1)上有零點(diǎn),則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案