10.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

分析 由三視圖可知:該幾何體為一個(gè)四棱錐,底面是正方形且與一個(gè)側(cè)面垂直.

解答 解:由三視圖可知:該幾何體為一個(gè)四棱錐,底面是正方形且與一個(gè)側(cè)面垂直.
∴該幾何體的體積=$\frac{1}{3}×{1}^{2}×1$=$\frac{1}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查了三視圖的有關(guān)計(jì)算、四棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在棱長為1的正方體ABCDA1B1C1D1中,E為棱BC的中點(diǎn),點(diǎn)F是棱CD上的動(dòng)點(diǎn),試確定點(diǎn)F的位置,使得D1E⊥平面AB1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,當(dāng)∠xOy=α,且α∈(0,$\frac{π}{2}$)∪($\frac{π}{2}$,π)時(shí),定義平面坐標(biāo)系xOy為α-仿射坐標(biāo)系.在α-仿射坐標(biāo)系中,任意一點(diǎn)P的斜坐標(biāo)這樣定義:$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$分別為與x軸、y軸正向相同的單位向量,若$\overrightarrow{OP}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,則記為$\overrightarrow{OP}$=(x,y).現(xiàn)給出以下說法:
①在α-仿射坐標(biāo)系中,已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,t),若$\overrightarrow{a}$∥$\overrightarrow$,則t=6;
②在α-仿射坐標(biāo)系中,若$\overrightarrow{OP}$=($\frac{1}{2}$,$\frac{1}{3}$),若$\overrightarrow{OQ}$=($\frac{1}{3}$,-$\frac{1}{2}$),則$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0;
③在60°-仿射坐標(biāo)系中,若P(2,-1),則|$\overrightarrow{OP}$|=$\sqrt{3}$;
其中說法正確的有①③.(填出所有說法正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.有下列命題中,正確的是( 。
A.“若$\overrightarrow a=\overrightarrow b$,則$|\overrightarrow a|=|\overrightarrow b|$”的逆命題B.命題“?x∈R,$x+\frac{1}{x}<2$”的否定
C.“面積相等的三角形全等”的否命題D.“若A∩B=B,則A⊆B”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,點(diǎn)M,N分別在PB,PC上,且MN∥BC.
(Ⅰ)證明:平面AMN⊥平面PBA;
(Ⅱ)若M為PB的中點(diǎn),求二面角M-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.球面上四點(diǎn)A,B,C,D滿足AB=1,BC=$\sqrt{3}$,AC=2,若三棱錐D-ABC體積的最大值為$\frac{{\sqrt{3}}}{2}$,則這個(gè)球體的表面積為$\frac{100π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x3+ax2-a2x+3.
(Ⅰ)若a=2,求f(x)在[-1,2]上的最值;
(Ⅱ)若f(x)在(-$\frac{1}{2}$,1)上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用數(shù)學(xué)歸納法證明$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$≥$\frac{n}{2}$(n∈N*),從“n=k(k∈N*)”到“n=k+1”時(shí),左邊需增加的代數(shù)式為( 。
A.$\frac{1}{{2}^{k}+1}$B.$\frac{1}{{2}^{k+1}}$
C.$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}}$D.$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在銳角△ABC中,$\frac{{a}^{2}+^{2}-{c}^{2}}{\sqrt{3}ab}$=$\frac{cosC}{sin(B+C)}$.
(1)求角A;
(2)若a=2,且sinB+cos(C+2B-$\frac{5π}{6}$)取得最大值時(shí),求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案